In a new study by SBP, researchers have identified a novel kinase cascade that regulates mTORC1, a protein complex implicated in the control of cancer cell growth in response to nutrients. The study, published in Cell Reports, provides further insight into the control of mTORC1 activation, and highlights several new potential drug targets to treat human pathologies linked to mTORC1 deregulation. Continue reading “Pathway that controls cancer cell proliferation discovered”
Category: Cell Death and Survival Networks
New drug squashes cancer’s last-ditch efforts to survive
As a tumor grows, its cancerous cells ramp up an energy-harvesting process to support its hasty development. This process, called autophagy, is normally used by a cell to recycle damaged organelles and proteins, but is also co-opted by cancer cells to meet their increased energy and metabolic demands. Continue reading “New drug squashes cancer’s last-ditch efforts to survive”
How arsenic cures leukemia
For the first time, Sanford-Burnham researchers have shown how the reversible interactions of the small protein SUMO work to facilitate treatment of acute promyelocytic leukemia (APL). The study, published recently in the journal Science Signaling, explains how the on-off associations of SUMO are required to destroy the APL causing oncoprotein and pave the way for an arsenic-based cure. Continue reading “How arsenic cures leukemia”
Melanoma’s addiction to glutamine is the basis for cancer growth
Researchers at Sanford-Burnham have discovered that without a source of glutamine—one of the 20 amino acids used to build proteins—melanoma cells will stop proliferating and die. Their craving for glutamine stems from their ability to “abuse” this essential nutrient by using it as an additional source of carbon and energy. The findings present a rational basis for a treatment strategy that limits the supply of glutamine to tumors, potentially through nutritional interventions or inhibitors of glutamine uptake. The results of the study appear online in Oncotarget today. Continue reading “Melanoma’s addiction to glutamine is the basis for cancer growth”
New compound shows promise for safe, effective treatment of heart attack and stroke
Heart attack and ischemic stroke affect hundreds of thousands of Americans every year and are leading causes of death in the United States. Both of these conditions are caused by blood clots that block vessels and interrupt blood flow to the heart or the brain, respectively. Antiplatelet therapies such as aspirin prevent clotting by decreasing the activity of blood cells called platelets, thereby lowering the risk of dying from a heart attack or having a stroke. But these drugs can cause serious side effects, such as gastrointestinal toxicity, abnormally low blood cell counts, and bleeding. Therefore, there is a strong need for research aimed at better understanding the molecular mechanisms leading to platelet activation in order to develop improved therapies.
New study sheds light on cancer stem cell regulation
Researchers at Sanford-Burnham have discovered a precise stem cell signaling process that can lead to intestinal tumors if disrupted. The findings add to our understanding of how stem cells give rise to tumors and identify specific stem cell molecules that may be targeted to prevent the onset, progression, and recurrence of intestinal cancers. The results of the study appear online in Cell Reports today. Continue reading “New study sheds light on cancer stem cell regulation”
Targeting protein could improve diagnosis and treatment of lymphoma
This post was written by Janelle Weaver, PhD, a freelance writer
Lymphoma is the most common blood cancer in the United States and is responsible for about 20,000 deaths each year. This type of cancer begins in white blood cells called lymphocytes, which normally play an important role in the immune system by recognizing and responding to pathogens such as bacteria and viruses. To control infections, these cells must multiply in a process that depends on a protein called MALT1. But when inappropriately activated, MALT1 drives the survival of lymphoma cells, underscoring the need to monitor the activity of this protein to develop novel diagnostic tests and facilitate drug discovery. Continue reading “Targeting protein could improve diagnosis and treatment of lymphoma”
The switch that promotes kidney cancer progression and metastasis
Kidney cancer is the sixth most common cancer in adults in the United States. Clear-cell kidney cancer, or clear-cell renal cell carcinoma (CRCC)—the cells appear pale and clear under a microscope—accounts for seven out of 10 people with kidney cancer, and is the most aggressive form of the disease. Because kidney cancer does not cause symptoms until the tumor has already grown, and is very difficult to detect in a routine physical examination, approximately 25 to 30 percent of patients aren’t diagnosed until the disease is metastatic. Unfortunately, metastatic clear-cell kidney cancer is currently incurable. Continue reading “The switch that promotes kidney cancer progression and metastasis”