Genomic Control of Metabolism Archives - Sanford Burnham Prebys
Institute News

Ketogenesis prevents fatty liver disease

Authorsgammon
Date

January 12, 2015

A new study, published in the Journal of Clinical Investigation, suggests that ketogenesis may prevent non-alcoholic fatty liver disease (NAFLD). NAFLD is term used to describe the accumulation of fat in the liver of people who drink little or no alcohol. It affects approximately one billion individuals worldwide, has become a leading cause of cirrhosis, and increases the risk of cardiovascular disease, including heart attacks and stroke. Continue reading “Ketogenesis prevents fatty liver disease”

Institute News

Enzymes could be key for brain cancer and Alzheimer’s disease

AuthorGuest Blogger
Date

December 9, 2014

This post was written by Janelle Weaver, PhD, a freelance writer.

Animals ranging from fish to humans produce a vitamin-A metabolite called retinoic acid, which plays an important role in growth and embryonic development and protects against diseases such as cancer. By regulating the activity of key genes, retinoic acid causes immature cells called embryonic stem cells to turn into mature, specialized cells such as neurons. “Neurons—the building blocks of the nervous system—are particularly important cell types in therapy, due to the fact that they normally don’t reproduce or replace themselves after they become damaged,” said Laszlo Nagy, MD, PhD, director of the Genomic Control of Metabolism Program and professor in the Diabetes and Obesity Research Center at Sanford-Burnham’s Lake Nona campus. “Despite their crucial role, we still have a limited understanding regarding the molecular programs that coordinate their functionality.” Continue reading “Enzymes could be key for brain cancer and Alzheimer’s disease”

Institute News

A nuclear receptor that binds more than 5,000 sites in the genome—and promotes angiogenesis.

Authorsgammon
Date

July 17, 2014

The retinoid X receptor (RXR) is a nuclear hormone receptor—meaning that it sits on various parts of the genome—and turns genes “on” and “off.” RXR is known to play an important role in many fundamental biological processes such as reproduction, cellular differentiation, bone development, and hematopoiesis. Continue reading “A nuclear receptor that binds more than 5,000 sites in the genome—and promotes angiogenesis.”