aging Archives - Page 3 of 3 - Sanford Burnham Prebys
Institute News

Slowing down the “aging clock”

AuthorJessica Moore
Date

April 14, 2017

What if it were possible to slow down the clock on aging? There may indeed be such a clock in all your cells. New research from the laboratory of Peter Adams, PhD, professor at Sanford Burnham Prebys Medical Discovery Institute (SBP), provides further evidence that the epigenome—the pattern of chemical tags across our chromosomes that help determine which genes can be read—is the key to aging.

“We found that conditions or treatments that extend lifespan make the epigenome of an old animal look like that of a much younger one,” says Adams, senior author of one of a pair of studies in Genome Biology. “In other words, the ‘epigenetic clock’ can be slowed. That suggests that to help people stay healthy longer and lower their risk of diseases like Alzheimer’s, cancer, and atherosclerosis, we should find molecules that do the same thing.”

Adams’ studies, performed in collaboration with the lab of Trey Ideker, PhD, professor at UC San Diego, build on previous findings in humans. Ideker and subsequently other teams of scientists had identified the genomic sites at which the presence or absence of a chemical tag correlates with age, and created an algorithm to tell a person’s age within two or three years by analyzing all those sites. This epigenetic clock speeds up in people with diseases that lead to earlier onset of aging-associated problems, such as obesity or HIV infection, or who have survived severe psychological stress in childhood.

Adams’ and Ideker’s teams showed that longevity-conferring interventions have the opposite effect—they put a brake on age-associated epigenetic changes. To make that discovery, they compared the epigenomes of normal mice to those of mice in which aging was slowed by three strategies that are all well known to extend the mouse lifespan: a longevity mutation (Prop1df/df, which also causes dwarfism), caloric restriction (reducing dietary intake significantly, but not enough to harm the mice), and rapamycin, a drug with multiple effects on metabolism and the immune system.

“To show that longer life correlates with slower epigenetic aging, we first had to delineate the mouse epigenetic clock,” adds Adams. “That provides us with a very useful tool. Now we can do experiments to find out whether epigenetic changes actually drive aging. For example, we can compare animals with slow and fast epigenetic clocks to see if the ones that age slower stay healthier as they age.

“And we can investigate how the epigenetic clock “ticks”—what cellular processes cause these changes over time? The answers to that question could identify targets for anti-aging medicines.”

Institute News

An “Odd” gene affects aging of the heart

AuthorJessica Moore
Date

February 1, 2017

As we get older, our hearts change in ways that make it harder for them to pump blood. They become stiffer, less efficient at generating energy, and more likely to respond to damage with inflammatory chemicals. To help find new ways to slow that decline, researchers in the laboratory of Rolf Bodmer, PhD, professor and director of the Development, Aging and Regeneration Program at Sanford Burnham Prebys Medical Discovery Institute (SBP), are looking at how the heart ages at a molecular level.

Bodmer’s team recently discovered a new potential contributor to cardiac aging, a protein called Odd, opening up a novel direction for research on therapies to prolong heart health. In their study, published in the journal Aging Cell, the gene for Odd, which controls the activity of other genes by turning them on or off, was found to be turned up in the hearts of old fruit flies. Bodmer’s lab studies flies because their hearts deteriorate with age in the same ways that human hearts do, but their genetics are much simpler.

“It’s intriguing that Odd is linked to aging because its known function is in early development—it’s crucial for the heart to form properly, and, as we found here, is also important for preventing the heart from deteriorating prematurely,” says Bodmer.

Odd’s involvement in cardiac aging was uncovered by a genome-wide comparison of the genes that are active in the hearts of young and old flies. Odd was one of over 200 genes whose activity was significantly elevated in older flies. Remarkably, further analysis showed that in aging hearts, increasing Odd activity temporarily protects the heart from decline by supporting proper electrical function and heart rate.

“Our findings suggest that increased levels of Odd in older hearts may be a way to compensate for aging-associated loss of function,” comments Bodmer. “In combination with a companion paper showing that another gene-regulating protein, FoxO, helps preserve the adult heart, they support a growing body of evidence that genes that are crucial in development are also important to keep the heart running well into old age.”

Bodmer contributed to the other paper, from the lab of Anthony Cammarato, PhD, assistant professor at Johns Hopkins University School of Medicine, and previously a staff scientist in Bodmer’s lab. The paper showed that FoxO helps protect the aging heart by turning on genes that help get rid of unneeded proteins.

“Following up on the findings of both studies could point to ways to keep our hearts working better for longer,” Bodmer adds.

The Bodmer lab paper is available online here and the Cammarato lab paper is here.

Institute News

Siobhan Malany, PhD, selected to conduct novel medical research in space

AuthorDeborah Robison
Date

June 13, 2016

Siobhan Malany, PhD, director of Translational Biology at Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP) and founder of the Institute’s first spin-off company, Micro-gRx, Inc., has been awarded $435,000 to study atrophy in muscle cells in microgravity on the International Space Station (ISS). In microgravity, conditions accelerate changes in cell growth similar to what occurs in the aging and disease process of tissues. Using real-time analysis, Malany will be able to rapidly study cells for potential new therapeutic approaches to muscle degeneration associated with aging, injury or illness. Continue reading “Siobhan Malany, PhD, selected to conduct novel medical research in space”

Institute News

Fine-tuning cellular energy increases longevity

AuthorJessica Moore
Date

February 25, 2016

New research from SBP has identified a protein that can extend the natural lifespan of C. elegans, a microscopic roundworm commonly used for research on aging and longevity. The findings, published in Cell Reports, expand what we know about the aging process and may lead to new ways to delay the onset of human age-related diseases such as cancer and neurodegenerative diseases. Continue reading “Fine-tuning cellular energy increases longevity”

Institute News

SBP’s 37th Annual Symposium: Aging and Regeneration

Authorsgammon
Date

November 3, 2015

On Friday, October 30, more 350 people came to SBP’s 37th Annual Symposium to hear leading scientists present their latest research on aging and regeneration.  The presenters, listed here, provided valuable insight into the latest studies on what causes aging, and strategies to repair injuries, prolong life, and prevent diseases.  The event was hosted by (from left to right): Rolf Bodmer, PhD, Malene Hansen, PhD, (in bee costume for Halloween) Alexey Terskikh, PhD

 

organizers-symposium-beaker

Many congratulations to Esther Minotti for successfully organizing the event!

symposium-photo-beaker

And many thanks to the Glenn Foundation for Medical Research for their support.

Institute News

How proteins age

Authorsgammon
Date

October 19, 2015

SBP researchers and colleagues discover a mechanism that regulates the aging and abundance of secreted proteins.

Physiological processes in the body are in large part determined by the composition of secreted proteins found in the circulatory systems, including the blood. Each of the hundreds of proteins in the blood has a specific life span that determines its unique range of abundance. In fact, measurements of their quantities and activities contribute to many clinical diagnoses. However, the way in which normal protein concentrations in the blood are determined and maintained has been a mystery for decades.

Biomedical scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) and UC Santa Barbara (UCSB) have now discovered a mechanism by which secreted proteins age and turnover at the end of their life spans. Their findings, which shed light on a crucial aspect of health and disease, appear today in the Proceedings of the National Academy of Sciences (PNAS).

“This is a fundamental advance that is broadly applicable and provides an understanding of how secreted proteins, which are involved in many important physiological processes, normally undergo molecular aging and turnover,” said senior author Jamey Marth, PhD, professor in SBP’s NCI-designated Cancer Center.

“When a secreted protein is made, it has a useful life span and then it must be degraded — the components are then basically recycled,” added Marth, also director of UCSB’s Center for Nanomedicine and a professor in the campus’s Department of Molecular, Cellular, and Developmental Biology. “We can now see how the regulation and alteration of secreted protein aging and turnover is able to change the composition of the circulatory system and thereby maintain health as well as contribute to various diseases.”

This newly discovered mechanism encompasses multiple factors, including circulating enzymes called glycosidases. These enzymes progressively remodel N-glycans, which are complex structures of monosaccharide sugars linked together and attached to virtually all secreted proteins.

It is the N-glycan structure itself that identifies the protein as nearing the end of its life span. Subsequently, multiple receptors known as lectins — carbohydrate-binding proteins — recognize these aged proteins and eliminate them from circulation.

Marth and colleagues identified more than 600 proteins in the bloodstream that exhibit molecular signs of undergoing this aging and turnover process. Many of these proteins are regulators of proteolysis (the breakdown of proteins), blood coagulation and immunity.

Honing in on individual examples, the researchers were able to track each of them through time and watch the process unfold. “In these studies we further saw that the different life spans of distinct proteins are accounted for by the different rates of aging due to N-glycan remodeling,” said lead author Won Ho Yang, PhD, a postdoctoral associate at SBP and at UCSB’s Center for Nanomedicine.

“Altering this aging and turnover mechanism is the fastest way to change the abundance of a secreted protein, which we increasingly note is occurring at the interface of health and disease,” Marth explained. “In retrospect from published literature and from studies in progress, we can now see how sepsis, diabetes and inflammatory bowel disorders can arise by the targeted acceleration or deceleration of secreted protein aging and turnover.”

“The discovery of this mechanism provides a unique window into disease origins and progression,” Marth added. “It has been known that circulating glycosidase enzyme levels are altered in diseases such as sepsis, diabetes, cancer and various inflammatory conditions. The resulting changes in the composition and function of the circulatory systems, including the blood and lymphatic systems, can now be identified and studied. We are beginning to see previously unknown molecular pathways and connections in the onset and progression of disease.”

Institute News

Newly discovered cell stress pathway could hold therapeutic promise for diverse diseases

AuthorGuest Blogger
Date

January 5, 2015

This post was written by Janelle Weaver, PhD, a freelance writer.

When cells are faced with unfavorable environmental conditions, such as limited nutrient availability, the activation of adaptive stress responses can help protect them against damage or death. For example, stressed cells can maintain sufficient energy levels for survival by degrading and recycling unnecessary or dysfunctional cellular components. This survival mechanism, known as autophagy (literally, ‘self-digestion’), also plays key roles in a variety of biological processes such as development and aging, and is often perturbed in various diseases. Even though tight control of autophagy is key to survival, relatively little is known about the signaling molecules that regulate this essential process.

Sanford-Burnham researchers have made important progress in addressing this gap in knowledge by discovering that proteins called STK3 and STK4 regulate autophagy across diverse species. As reported recently in Molecular Cell, the newly identified mode of autophagy regulation could potentially have important clinical implications for the treatment of a broad range of diseases, including cancer, diabetes, Alzheimer’s disease, cardiac dysfunction, and immune-related diseases.

“Our discovery is fundamental to our molecular understanding of how autophagy is regulated,” said senior study author Malene Hansen, PhD, associate professor of the Development, Aging, and Regeneration Program at Sanford-Burnham. “Because impairment in the autophagy process has been linked to many disorders in humans, we believe that pharmacological agents targeting this novel regulatory circuit may hold great therapeutic potential.”

Critical kinases

Autophagy is a cellular recycling process involving a highly intricate and complex series of events. Cellular components such as abnormal molecules or damaged organelles are first sequestered within vesicles known as autophagosomes. These vesicles then fuse with organelles called lysosomes, which contain enzymes that break down various molecules. This fusion process results in the formation of hybrid organelles called autolysosomes, where the defective cellular components are enzymatically degraded and recycled. A protein called LC3 plays crucial roles in the formation of autophagosomes and the recruitment of dysfunctional cellular components to these vesicles. The signaling events that coordinate LC3’s various functions in autophagy have not been clear, but new research from the Hansen lab now proposes a novel and essential role for the mammalian Hippo kinases STK3 and STK4 in regulating autophagy by targeting LC3 for phosphorylation.

In their study, Hansen and her team describe that deficiency in both STK3 and STK4 impairs autophagy not just in mammalian cells, but also in nematodes and yeast. When exploring how the kinases regulate autophagy in mammalian cells, the researchers discovered that phosphorylation of LC3 by STK3 and STK4, specifically on the amino acid threonine 50, is critical for fusion between autophagosomes and lysosomes—an essential step in the autophagy process. “Collectively, the results of this study strongly support a critical and evolutionarily conserved role for STK3 and STK4 in regulating autophagy, by phosphorylating the key autophagy protein LC3, at least in mammalian cells,” Hansen said.

Killing bacteria

Previous studies have shown that STK4 also plays a role in regulating antibacterial and antiviral immunity in mammals, including humans. Moreover, autophagy is known to play a role in the clearance of intracellular pathogens. “These findings, taken together with our discovery that deficiency in STK3 and STK4 severely compromises autophagy, led us to test whether STK4 also plays a role in antimicrobial immunity through its function in autophagy,” said lead study author Deepti Wilkinson, Ph.D., a postdoctoral fellow in Hansen’s lab.

To test this notion, the researchers collaborated with Victor Nizet MD, professor of Pediatrics and Pharmacy  at UC San Diego and found that indeed mouse embryonic cells deficient in both STK3 and STK4 were unable to efficiently kill intracellular group A streptococci—bacteria known to be cleared by autophagy. However, an LC3 mutation that resulted in constant phosphorylation at threonine 50 restored the ability of the STK3/STK4-deficient cells to kill the bacteria. “This finding suggests that the same STK4-LC3 signaling pathway involved in autophagy also contributes to the response of mammalian cells to infection with intracellular pathogens and could play a role in human immune-related disease,” Wilkinson said.

Correcting defects

Moving forward, the researchers plan to further probe the molecular mechanisms by which STK3 and STK4 regulate autophagy. They will also investigate the therapeutic implications of the STK3/STK4 signaling pathway for tumor suppression as well as immune-related disorders such as bacterial and viral infections. “Understanding how autophagy works and why it sometimes stops to function optimally is essential for fighting diseases such as cancer, diabetes and neurodegeneration,” Hansen said.

“We have made a major contribution towards this endeavor by showing that STK3 and STK4 play an essential role in keeping the process of autophagy running smoothly by directly phosphorylating the key autophagy protein LC3. We hope our discoveries will lead to the development of effective drugs that can help correct autophagy defects that commonly occur in these diseases,” added Hansen.

A copy of the paper can be found at: http://www.ncbi.nlm.nih.gov/pubmed/25544559

Institute News

Sanford-Burnham researcher awarded American Federation for Aging Research award

Authorsgammon
Date

December 23, 2014

Malene Hansen, PhD, associate professor in our Development, Aging, and Regeneration Program has been awarded the Julie Martin Mid-Career Award in Aging Research. The award includes a new grant to continue her research in the field of aging. Hansen is a three-time American Federation for Aging Research (AFAR) grant recipient. AFAR’s grants are given to scientists at institutions nationwide based on hard work, ingenuity, and leadership that advance cutting-edge research to help us live healthier, longer lives. Continue reading “Sanford-Burnham researcher awarded American Federation for Aging Research award”

Institute News

The bright side of free radicals

Authorsgammon
Date

September 17, 2014

In a new study by Rolf Bodmer, Ph.D., director of the Development, Aging, and Regeneration Program at Sanford-Burnham, and Hui-Ying Lim, Ph.D., assistant member of the Free Radical Biology and Aging Program at the Oklahoma Medical Research Foundation as lead author, researchers report a previously unrecognized role for reactive oxygen species (ROS) in mediating normal heart function. The findings show how under normal physiological conditions, ROS produced in non-muscle heart cells act on nearby muscle cells to maintain normal cardiac function. The results provide vital insight on how ROS direct cell communications, and in addition to the heart, may be important for the function of other organs.

“Until now, scientists knew that ROS in non-muscle heart cells affected nearby muscle cells in conditions of cellular damage and stress,” said Bodmer. “We have shown that ROS have an essential role in normal cardiac health. Understanding the fundamental communication systems in healthy and damaged hearts has important implications for developing protective and therapeutic interventions for cardiac diseases.”

ROS—a reputation of destruction ROS are free radicals that are usually associated with diseases such as cancer, cardiovascular, and neurodegenerative disorders. ROS have atoms with an unpaired electron in their orbit which can send them on a rampage to pair with other molecules, including DNA—causing mutations that contribute to disease. Antioxidants are molecules that soak up the extra electron and remove free radicals, raising the possibility that antioxidant vitamins and supplements might have a protective role in human health.

Opinions on antioxidant supplements are highly polarized. Several large-scale randomized trials of supplements have had inconsistent results and the antioxidant pendulum appears to be swinging from healthy to insignificant, and in some cases even toxic. More reliable data is needed to better define the role of antioxidants in the prevention of cardiovascular and other diseases.

ROS regulate cardiac function by cell-to-cell signaling The new study, published in Cell Reports, illustrates a previously unappreciated role for ROS signaling in the heart and supports the critical concept that optimal levels of ROS are needed in the body to provide protection to the heart and other organs.

“Interestingly, we found that ROS do not diffuse from non-muscle cells into cardiac muscle cells to exert their function. Instead, ROS in the non-muscle (pericardial) cells exert their function by starting a specific signaling cascade within the cell that in turn acts on nearby cardiac muscle cells to regulate their proper function,” said Lim. “Although the precise mechanism by which ROS maintain cardiac functions has yet to be established, our research provides a more complete understanding of the functional interactions between cardiac muscle cells and non-muscle cells—and possibly cell-to-cell (paracrine) communications in other tissues.”

The research team used Drosophila melanogaster—the common fruit fly—to decipher the ROS signals that impact the cell function. The Drosophila heart shares many of the same genes, proteins, and structural characteristics with humans, and has been used for decades as a model to understand the human genes that govern healthy development as well as those involved with disease.

A link to the paper can be found at: http://www.cell.com/cell-reports/abstract/S2211-1247(14)00143-0