muscle degeneration Archives - Sanford Burnham Prebys
Institute News

Muscle-enhancing protein could hold key to treating muscular dystrophies

AuthorGuest writer
Date

June 5, 2017

Nuclear pore complexes are large multiprotein channels that act as the sole gateway between the nucleus and cytoplasm. For many years, scientists assumed that the only function of nuclear pore complexes was to regulate the transport of molecules across the nuclear envelope—the double membrane surrounding the eukaryotic cell nucleus. But accumulating evidence is revealing that nuclear pore complexes play key roles in a wide range of cellular functions, contributing to diseases that affect various tissues in the body.

In a new study, Sanford Burnham researchers shed new light on how particular nucleoporins—the proteins that make up nuclear pore complexes—control important cellular and physiological processes in specific tissues. As reported in a study published June 5 in Developmental Cell, a team led by Maximiliano D’Angelo, PhD, assistant professor at Sanford Burnham Prebys Medical Discovery Institute, showed that a tissue-specific nucleoporin called Nup210 regulates muscle cell survival, muscle fiber maturation, and muscle growth in zebrafish.

“In this work, we discovered that Nup210 plays a critical role in muscle maintenance and that decreasing its levels leads to muscle degeneration,” D’Angelo says. “These findings suggest that modulating the activity of this nuclear pore complex component could potentially be exploited to stimulate muscle repair and regeneration.”

Exploring roles of tissue-specific nucleoporins

Previous studies have shown that the protein composition of nuclear pore complexes varies across cell types and tissues. Moreover, mutations affecting specific nucleoporins have been linked to tissue-specific diseases, including blood cancer and other life-threatening conditions affecting major organs such as the brain and heart. But scientists are still trying to understand how variations in the protein makeup of nuclear pore complexes across tissues affect diverse cellular and physiological processes.

Toward that goal, D’Angelo and his team recently showed that a single change in the composition of nuclear pore complexes is sufficient to regulate a cellular process as complicated as cell differentiation. Specifically, they discovered that Nup210 plays a critical role in controlling gene activity and cell fate to promote muscle cell development. However, it has been unclear how Nup210 regulates gene activity, what role this nucleoporin plays in skeletal muscle physiology in living organisms.

D’Angelo and his collaborators set out to address these questions in the new study, using a combination of mouse muscle cells and the zebrafish model organism, which has emerged as an attractive model to study the genetic basis of muscle development and disease. The researchers found that Nup210 recruits another protein called Mef2C to nuclear pore complexes, thereby activating genes that promote skeletal muscle growth and maintenance, muscle fiber maturation, and muscle cell survival. Moreover, depletion of Nup210 in zebrafish resulted in muscle degeneration, further highlighting the important role of this nucleoporin in muscle growth.

Harnessing new discoveries to treat muscle disease

These findings are a significant step toward developing much-needed therapies for muscular dystrophies—a group of more than 30 genetic diseases characterized by progressive weakness and degeneration of the skeletal muscles that control movement. Currently, there is no cure or specific treatment to stop or reverse any form of muscular dystrophy. As a result, most patients eventually lose the ability to walk and struggle to carry out the basic tasks of daily living.

“We are currently working on addressing this problem by investigating whether increasing Nup210 levels can stimulate the differentiation of dystrophic muscle progenitor cells and increase muscle repair in models of muscular dystrophy,” D’Angelo says. “These findings could lead to the development of new therapies for the treatment of muscle dystrophies based on modulating nuclear pore complex function.”

Institute News

Boosting cells’ ability to recycle their parts to treat muscular dystrophy

AuthorJessica Moore
Date

August 15, 2016

If a cell can’t efficiently recycle its machinery—energy generators, protein makers, and transport systems—it ends up using faulty equipment. Cell recycling, called autophagy, is necessary to keep cells functioning at full capacity. When autophagy doesn’t work well in muscle stem cells, which replace worn-out muscle cells, the ability to maintain healthy muscle tissue is compromised.

This is precisely what Pier Lorenzo Puri, MD, professor in the Development, Aging, and Regeneration Program, discovered in a study conducted in collaboration with Lucia Latella, PhD, at the Fondazione Santa Lucia in Rome.

Their work, published in Cell Death and Differentiation, showed that impaired autophagy in muscle stem cells of patients with advanced Duchenne muscular dystrophy (DMD) reduces their ability to support long-term regeneration. DMD is a childhood-onset genetic disorder, which mostly affects boys and causes progressive muscle weakness, invariably leading to loss of the ability to walk. As the heart and respiratory muscles also eventually deteriorate, DMD shortens lifespan, usually to less than 30 years.

They also demonstrate that boosting autophagy in a mouse model of DMD, at later stages when the recycling process slows down, improves muscle regeneration.

“These findings provide solid evidence that future drugs that increase rates of autophagy would help DMD patients,” said Puri. “In this study, mice were fed a low-protein diet to induce autophagy. The low-protein diet makes cells break down their own proteins to get the building blocks needed to make new muscle. But of course a low-protein diet isn’t a feasible approach in the long term, which is why we need drugs that specifically induce autophagy.

“Although there are several FDA-approved drugs to treat other conditions—such as high blood sugar and elevated cholesterol—they tend to have side effects that would rule them out for DMD patients. It may take a few years, but new drugs that activate autophagy in DMD patients could significantly improve their health.

Our next step will be to examine whether combining this approach with others, such as nitric oxide releasers or histone deacetylase inhibitors, which may also increase autophagy, would further promote muscle regeneration.”

The paper is available online here.

Institute News

Siobhan Malany, PhD, selected to conduct novel medical research in space

AuthorDeborah Robison
Date

June 13, 2016

Siobhan Malany, PhD, director of Translational Biology at Sanford Burnham Prebys Medical Discovery Institute at Lake Nona (SBP) and founder of the Institute’s first spin-off company, Micro-gRx, Inc., has been awarded $435,000 to study atrophy in muscle cells in microgravity on the International Space Station (ISS). In microgravity, conditions accelerate changes in cell growth similar to what occurs in the aging and disease process of tissues. Using real-time analysis, Malany will be able to rapidly study cells for potential new therapeutic approaches to muscle degeneration associated with aging, injury or illness. Continue reading “Siobhan Malany, PhD, selected to conduct novel medical research in space”