weight loss Archives - Sanford Burnham Prebys
Institute News

New research explains how experimental herb-derived obesity drug works

AuthorJessica Moore
Date

April 7, 2017

When a recent study identified a chemical found in an herb used in traditional Chinese medicine as a potential treatment for obesity, it made headlines. That’s because there are not yet any good ways to help obese people lose weight—the drugs that are available now work no better than diet and exercise, on average leading to a loss of only five percent of a person’s weight.

However, that study was only a first step—the molecular basis for the effects of the compound, called celastrol, was unknown. New research from the lab of Xiao-Kun Zhang, PhD, adjunct professor at Sanford Burnham Prebys Medical Discovery Institute (SBP), identifies the receptor on which celastrol acts and the cellular processes it alters.

“Knowing what celastrol does at the molecular level could help drug developers make safer obesity treatments,” explains Zhang. “Celastrol is too toxic to use as an obesity drug, and we’re working on modifying it to make it more tolerable, but it may also help to find other molecules that work the same way.”

More than one-third of the U.S. adult population, or 74 million people, are obese, putting them at greater risk for type 2 diabetes, heart disease, fatty liver disease, arthritis of the knees, and certain cancers. Finding treatments that help people lose a significant amount of weight could greatly reduce the incidence of these diseases.

Zhang and his lab have identified celastrol’s target, a receptor called Nur77. Their research, published recently in Molecular Cell, shows that celastrol prevents weight gain in mice fed a high-fat diet by altering the function of Nur77. This receptor is normally located in the nucleus, where it controls the activity of specific genes. When celastrol binds Nur77, it moves to the mitochondria—the cell’s energy plants—where it facilitates the destruction of those that are old and broken down.

“Our findings suggest that Nur77 could be a drug target for future anti-obesity drugs,” adds Zhang. “Other studies have also indicated that this receptor has an important role in regulating metabolism.

“Now we want to figure out how celastrol’s effects on mitochondria relate to metabolism. Celastrol seems to make cells more sensitive to leptin, a hormone that inhibits hunger, so we plan to look for connections between Nur77 and leptin signaling in the appetite center of the brain.”

Institute News

Muscle heat may hold key to promoting weight loss

AuthorJessica Moore
Date

July 6, 2016

If you’ve tried to lose weight, you may have wished for a pill that would help you burn calories with little or no exercise. Because such a drug could treat obesity, which affects over one-third of Americans, many researchers are working toward this goal. Treatments that boost calorie burning could enhance the limited efficacy of current weight-loss drugs that suppress appetite.

Most scientists in this field focus on brown adipose tissue, a type of fat that’s specialized to convert calories to heat to keep you warm in the cold. The challenge with that approach is that most adults have very little brown fat—therapies would have to first convert regular white fat to brown. Instead, the laboratory of Muthu Periasamy, PhD, professor in the Center for Metabolic Origins of Disease, is investigating how to stimulate another, more plentiful tissue—muscle—to do the same thing.

Periasamy and Naresh Bal, PhD, a staff scientist in his lab, got the idea that muscle could be important for generating heat from birds—they don’t have any brown fat, but they can still keep themselves warm without constant shivering. In a paper recently published in the Journal of Biological Chemistry, Bal removed the brown fat from mice to examine whether muscle can effectively generate heat in mammals.

“Not only did these mice maintain near-normal body temperatures when living in the cold,” said Bal, “but they burned more calories than mice whose brown fat remained intact—they lost three times as much fat after nine days at cold temperatures.” The extended exposure is required to eliminate the contribution of shivering, which stops after they become adapted to the cold, within the first few days.

“These results suggest that inducing muscle to generate heat could be an even more efficient way to treat obesity than doing the same in brown fat,” said Periasamy. “This is the first step toward drugs that activate this process, called nonshivering thermogenesis (NST).”

“Our next step is to determine which factors turn on NST in muscle,” added Bal.

The lab’s work so far has provided some clues. They have previously shown that the protein sarcolipin changes the way muscle cells use ATP, causing them to generate heat instead of contract. In this research, they observed much higher levels of sarcolipin in the muscles of cold-adapted mice who lack brown fat.

“Since sarcolipin acts by binding another protein, it probably wouldn’t be easy to block,” explains Bal. “To find better drug targets we plan to look at how it affects its target protein, a calcium pump, and how that changes calcium dynamics. Ultimately, we might be able to mimic those effects with a drug.”

The paper is available online here.

Institute News

Why the “Biggest Losers” don’t win

AuthorJessica Moore
Date

May 12, 2016

Following a recent publication on the long-term effects of participation in TV’s “Biggest Loser” competition, Steven Smith, MD, professor in SBP’s Integrative Metabolism Program and director of the Translational Research Institute for Metabolism and Diabetes at Florida Hospital, was interviewed by NBC WESH TV Orlando reporter Amanda Ober. Smith explained why nearly all of the “Biggest Losers” regained large proportions of the weight they had lost, and sometimes even more. Continue reading “Why the “Biggest Losers” don’t win”