jshort, Author at Sanford Burnham Prebys - Page 9 of 13
Institute News

Expanding the options to treat melanoma

Authorsgammon
Date

March 16, 2015

Melanoma is the most deadly form of skin cancer with approximately 10,000 deaths per year in the U.S. and more than 65,000 worldwide. Although there are more and better treatment options available today than in previous years, there is still an urgent need to develop drugs that target the numerous pathways melanoma cells use to multiply, spread, and kill. Continue reading “Expanding the options to treat melanoma”

Institute News

Molecule that fixes “leaky” blood vessels can impact cancer, stroke, and blindness

Authorsgammon
Date

March 13, 2015

In a new study by Masanobu Komatsu, Ph.D., associate professor in the Cardiovascular Pathobiology Program and Tumor Microenvironment and Metastasis Programs, a cellular protein called R-Ras was found to suppress the effects of vascular endothelial growth factor (VEGF), a signaling molecule that helps create new blood vessels and is overexpressed in many tumors. The findings create a new route to treat cancer as well as certain causes of blindness and ischemic diseases. Continue reading “Molecule that fixes “leaky” blood vessels can impact cancer, stroke, and blindness”

Institute News

Study explains control of cell metabolism in patient response to breast cancer drugs

Authorsgammon
Date

March 9, 2015

A new research study has discovered a mechanism that explains why some breast cancer tumors respond to specific chemotherapies and others do not. The findings highlight the level of glutamine, an essential nutrient for cancer development, as a determinant of breast cancer response to select anticancer therapies, and identify a marker associated with glutamine uptake, for potential prognosis and stratification of breast cancer therapy. The study results were published online in Cancer Cell. Continue reading “Study explains control of cell metabolism in patient response to breast cancer drugs”

Institute News

Rare Disease Day gathers patients, clinicians, and researchers to discuss sugar therapy

Authorsgammon
Date

March 2, 2015

“Treating Disease with Sugar” was the theme of this year’s Annual Rare Disease Day Symposium at Sanford-Burnham, a subject that drew scientists and patients together in an informal setting to share promising research on how sugar may be used to treat certain rare genetic disorders—and some not-so-rare disorders. While sugar may seem like an odd approach, for patients with mutations in the genes that attach sugar molecules to proteins (glycobiology), and sufferers of multiple sclerosis and cancer, the concept is proving both rational and effective. Continue reading “Rare Disease Day gathers patients, clinicians, and researchers to discuss sugar therapy”

Institute News

Melanoma’s addiction to glutamine is the basis for cancer growth

Authorsgammon
Date

February 17, 2015

Researchers at Sanford-Burnham have discovered that without a source of glutamine—one of the 20 amino acids used to build proteins—melanoma cells will stop proliferating and die. Their craving for glutamine stems from their ability to “abuse” this essential nutrient by using it as an additional source of carbon and energy. The findings present a rational basis for a treatment strategy that limits the supply of glutamine to tumors, potentially through nutritional interventions or inhibitors of glutamine uptake. The results of the study appear online in Oncotarget today. Continue reading “Melanoma’s addiction to glutamine is the basis for cancer growth”

Institute News

You’re invited to Rare Disease Day at Sanford-Burnham in La Jolla

Authorsgammon
Date

February 9, 2015

Did you know that in the United States there are more people with a rare disease than people with cancer and AIDS combined?

Rare Disease Day is an internationally recognized day to raise awareness about rare diseases and their impact on patients’ lives. There are more than 6,000 types of rare diseases, and most of them are genetic disorders that affect children. The term “rare disease” is a designation of disorders that affect fewer than 200,000 individuals. For most rare-disease patients, the rarity of their disorder makes the process of an accurate diagnosis a significant challenge—requiring extensive genetic and biochemical tests. Equally, if not more, challenging is the search for effective treatments to improve the health and lives of those that suffer. Continue reading “You’re invited to Rare Disease Day at Sanford-Burnham in La Jolla”

Institute News

New study sheds light on cancer stem cell regulation

Authorsgammon
Date

February 5, 2015

Researchers at Sanford-Burnham have discovered a precise stem cell signaling process that can lead to intestinal tumors if disrupted. The findings add to our understanding of how stem cells give rise to tumors and identify specific stem cell molecules that may be targeted to prevent the onset, progression, and recurrence of intestinal cancers. The results of the study appear online in Cell Reports today. Continue reading “New study sheds light on cancer stem cell regulation”

Institute News

Using stem cells to grow new hair

Authorsgammon
Date

January 27, 2015

In a new study, Sanford-Burnham researchers have used human pluripotent stem cells to generate new hair. The study represents the first step toward the development of a cell-based treatment for people with hair loss. In the United States alone, more than 40 million men and 21 million women are affected by hair loss. The research was published online in PLOS ONE.

“We have developed a method using human pluripotent stem cells to create new cells capable of initiating human hair growth. The method is a marked improvement over current methods that rely on transplanting existing hair follicles from one part of the head to another,” said Alexey Terskikh, PhD, associate professor in the Development, Aging, and Regeneration Program. “Our stem cell method provides an unlimited source of cells from the patient for transplantation and isn’t limited by the availability of existing hair follicles.”

The research team developed a protocol that coaxed human pluripotent stem cells to become dermal papilla cells. They are a unique population of cells that regulate hair-follicle formation and growth cycle. Human dermal papilla cells on their own are not suitable for hair transplants because they cannot be obtained in necessary amounts and rapidly lose their ability to induce hair-follicle formation in culture.

“In adults, dermal papilla cells cannot be readily amplified outside of the body and they quickly lose their hair-inducing properties,” said Terskikh. “We developed a protocol to drive human pluripotent stem cells to differentiate into dermal papilla cells and confirmed their ability to induce hair growth when transplanted into mice.”

“Our next step is to transplant human dermal papilla cells derived from human pluripotent stem cells back into human subjects,” said Terskikh. “We are currently seeking partnerships to implement this final step.”

View translations of this story

Donate Now

Institute News

A new approach to treating osteoarthritis

AuthorSusan Gammon
Date

January 20, 2015

In a recent collaborative research study between two brothers—one a rheumatologist and the other a medical engineer—novel shaped nanoparticles were able to deliver anti-osteoarthritis drugs directly to the cells that drive the onset and progression of osteoarthritis (OA). The findings show promise to improve the treatment options for the nearly 21 million Americans, 25 years of age and older, that suffer from this chronic, often debilitating disease.

“We are excited to have developed nanoparticles which can efficiently and safely bring anti-OA drugs into the cells called chondrocytes that cause OA,” said Massimo Bottini, Ph.D., adjunct assistant professor in the Bioinformatics and Structural Biology Program at Sanford-Burnham. “Our method not only delivered the drug effectively, but stayed in the joint for a prolonged time without causing side effects. This is a significant improvement over previous attempts to deliver anti-OA drugs to affected joints.”

About osteoarthritis Under normal conditions, the extracellular matrix of the joint is maintained through a continual remodeling process in which low levels of different enzymes that produce and degrade cartilage are maintained. However, with increasing age and general wear and tear on joints, OA can occur when the enzymes that degrade cartilage are overproduced, creating an imbalance that leans toward the loss of collagen and joint impairment.

“For advanced OA, joint-replacement surgery is the only option for patients to regain comfortable and normal joint functions. For less severe cases, there is currently no medical therapy that can slow down or halt progression of the disease. This makes OA one of the largest unmet clinical needs in the field of rheumatology,” said Nunzio Bottini, MD, Ph.D., an associate professor in the Division of Cellular Biology at the La Jolla Institute for Allergy and Immunology (LIAI), who is also a practicing rheumatologist—and Massimo’s brother.

“The goal of treating OA is to restore the balance of the enzymes that control the matrix environment. Since there is no blood supply to the joint, drugs to treat the disease must be injected directly into the joint,” said Nunzio.

“Until now, scientists have tried using spherical nanoparticles to deliver anti-OA drugs. But the physical shape and size of the spheres predisposes them to diffuse into the synovial fluid and be flushed out of the joint before they can be effective,” said Massimo. “We have designed a one-dimensional linear nanoparticle made of graphite that is 100,000 times thinner than a human hair. This unique nanoparticle is engineered to travel through the negatively charged extracellular matrix and carry molecules to the nucleus of chondrocytes to turn off the genes that cause the disease.”

The study Using a mouse model for OA, the brothers injected the novel nanoparticle loaded with a gene inhibitor into the knees of affected mice. The nanoparticle delivered large amounts of the gene inhibitor to the cytoplasm and the nucleus of chondrocytes. Importantly, particles remained in the joint for two weeks compared to only few days for spherical nanoparticles.

“This is a significant improvement over previous attempts to deliver drugs to OA joints,” said Massimo. “Our next step is to further optimize the nanoparticle, see how long it remains in the body, and move to clinical studies in humans,” said Massimo.

Arthritis is a complex disease and integrated work between technologists—such as my brother Massimo—and biologists like me significantly increases the chance to make major treatment advances. Our next objective is to secure NIH funding to continue applying our complementary expertise to the quest to improve the lives of those suffering from arthritis,” added Nunzio.

The collaborative study was published in ACS Nano and performed at both Sanford-Burnham and LIAI. Cristiano Sacchetti, PhD, a shared postdoctoral fellow in Massimo and Nunzio Bottini’s laboratories was lead author on the paper.

A link to the paper can be found at: http://pubs.acs.org/doi/abs/10.1021/nn504537b.