COVID-19 Archives - Page 2 of 2 - Sanford Burnham Prebys
Institute News

COVID-19: Using “mini lungs” to understand why some people fare worse than others

AuthorMonica May
Date

April 24, 2020

Evan Snyder tells us how he is using lung organoids to find effective treatments for COVID-19. 

As the novel coronavirus races around the globe, mystifying patterns are emerging. The virus seems to hit some people hard—including men, people over the age of 65 and individuals with pre-existing medical conditions. For others, particularly children, the symptoms may be mild or even nonexistent.

To understand why these disparities occur, stem cell expert Evan Snyder, MD, PhD, director of Sanford Burnham Prebys’ Center for Stem Cells and Regenerative Medicine, is turning to lung organoids—3D structures that replicate human lungs. 

We caught up with Snyder to learn more about these “mini lungs” in a dish—and how the outbreak has impacted his lab.

Why did you create these organoids?
A neonatologist who works in my lab, Sandra Leibel, MD, originally developed these organoids to see if we could help babies who have trouble breathing. Premature babies, and some full-term babies born with genetic conditions, can’t make surfactant—the material that allows the lungs to be flexible and breathe. The severe respiratory distress that is thought to kill some people with severe COVID-19 is actually the adult version of what these babies experience. 

I’m happy to report that, using this model, Sandra was able to find a therapy that might help these infants with the previously untreatable genetic condition. I’m hoping we can learn from this success to help people with severe COVID-19 and “adult respiratory distress syndrome.” 

How are these lung organoids made? 
We start with human induced pluripotent cells (hiPSC) created from skin cells and turn these into lung cells using the same chemical signals our body uses. Then the exciting part comes: We transform these cells from flat, two-dimensional layers into three-dimensional spheres that grow the way a lung would—aka “mini lungs in a dish.” Sandra, along with technician Alicia Winquist and Sanford Burnham Prebys graduate student Rachael McVicar, figured out the “secret sauce” the cells need to complete this process. 

What makes these lung organoids so special?
Lungs are very complicated organs. They have many cell types and structures that all interact with each other: air sac cells that make surfactant, airway cells, immune cells, blood vessel cells; and cells with cilia, tail-like organelles that whip around and clear out debris. Our organoids contain all these different parts, so they can be used to model human disease more closely than single layers of cells. They’re also easier to scrutinize, manipulate and test treatments in animal models. These organoids let us ask and answer all sorts of interesting questions.

What do you hope to learn about COVID-19 using this model? 
We want to learn the basics about the virus that causes COVID-19, called SARS-CoV-2. For example, how does the virus infect human lung cells? What does the virus do after it enters the lung cell? How does the virus move from one lung cell to another? The answers to these questions will allow us to find effective treatments for COVID-19. 

In addition, we can use this model to determine why some people fare worse than others. We can compare organoids created from men and women; younger or older people; people exposed to various environmental toxins from smoking or vaping; people with diabetes, heart or kidney disease; and even people of different racial backgrounds or individuals who have genetic variations that affect their ability to fight infection. 

If we figure out why the virus affects some people differently, we can potentially create tailored treatments. For example, we can ask whether any disparities we observe can be compensated for simply by increasing a dose of a drug or by adding another drug. With our model, we may be able to find these answers relatively quickly so that as many people as possible can benefit from any breakthroughs.

Will you partner with additional Sanford Burnham Prebys scientists on this research? 
Yes, we are in a fortunate position to collaborate with Sumit Chanda, PhD, who just completed a heroic (and I do mean heroic) effort to screen 12,000 known drugs for COVID-19. He pinpointed 30 promising drugs, and now we will help him study exactly how these drugs are working in a system that is clinically relevant. For example, in what stage of the virus’s life are they disrupting? Which part of the cell’s function is being rescued? Using lung organoids, we can rank the effectiveness of each drug—and help Sumit winnow the list to the most promising drugs for close-to-immediate use.

The best approach to treat COVID-19 will most likely be with a drug cocktail, similar to how we treat other RNA viruses. For this reason, it’s important to know how each drug is working, because we want to attack the virus at multiple points in its life cycle and block toxic downstream effects. Our model will help us map this out and advance the most promising drug combinations. 

How has the outbreak affected your lab work? 
I have time-sensitive, patient-relevant work ongoing, so I am still coming into the lab. In addition to our COVID-19 work, we are preparing to launch a clinical trial using stem cells to help newborns who are at risk for cerebral palsy

However, things are very different now. When I do go in, there are only one or two people instead of dozens, and we work in shifts. We limit our time to a few hours and only come in a few days a week. What I really miss is the meeting of the minds. Some of the most inspirational science comes from sitting around in a group and sharing ideas. Or having someone walk over and look through your microscope at the primary data. We do our best with Zoom. But the in-person human interactions are the part of science I really miss. 
 

Institute News

A scientist’s perspective on the coronavirus (COVID-19) pandemic

AuthorMonica May
Date

March 17, 2020

Infectious disease expert Sumit Chanda tells us how his team is combating the virus, and the advice he gives his loved ones.

Since the first case of coronavirus (COVID-19) was identified in December 2019, the respiratory virus has swept across the globe. Cases have been confirmed on every continent but Antarctica, prompting the World Health Organization to declare COVID-19 an official pandemic.

As the world grapples with the ongoing outbreak, we spoke with Sumit Chanda, PhD, an infectious disease expert and director of Sanford Burnham Prebys’ Immunity and Pathogenesis Program, to get his perspective on the pandemic and learn what Sanford Burnham Prebys scientists are doing to find effective treatments for COVID-19.

What is coronavirus?
Coronaviruses are a large family of viruses common in animals, but they can leap to humans, causing illnesses ranging from a common cold to severe respiratory diseases such as pneumonia, Middle East respiratory syndrome (MERS), and severe acute respiratory syndrome (SARS).

Were you surprised by the virus’s rapid spread? Why or why not? 
Once there was evidence of person-to-person transmission outside of China, the rapid global spread of the virus was not surprising. Since this is a new virus, there is no natural immunity in the human population to slow the spread of the pathogen. Furthermore, respiratory viruses are among the most easily spread microbes and thus considered to have high pandemic potential.

Is there a vaccine for COVID-19?
Since this is a new coronavirus, there is no vaccine—and developing one can take several years.

How are Sanford Burnham Prebys scientists working to combat COVID-19? 
As we speak, our scientists are looking to find known drugs that can inhibit the virus. Typically, it can take five to 10 years to bring a new drug to the market. However, the approach we are taking at Sanford Burnham Prebys, known as drug repositioning, can cut this development time dramatically. Since we are looking at FDA-approved drugs that are proven to be safe in humans, these medicines could rapidly get to people infected with the virus. If successful, drug repositioning will likely be the fastest path to find a therapeutic solution for the virus. 

Longer term, work has been ongoing to develop broad-spectrum antivirals. These medicines would work against many viruses, not just one. For example, if we had developed a broad-spectrum antiviral that works on MERS or SARS, it is likely it could be used for the current COVID-19 outbreak. Ideally, the therapy could be given prophylactically to block the rapid spread of the disease.

What are the benefits of drug repositioning? 
Drug repositioning is advantageous because FDA-approved drugs have already completed safety testing—meaning they have been used in people and are known to be safe. Safety testing can take years to complete. This means that if we do find a therapy that is effective against COVID-19, we can bring it to patients much faster than a novel treatment. 

Get an inside look at the race to find a treatment for COVID-19.

Any predictions for how far the virus will spread in the U.S.? 
We eagerly await large-scale testing for the virus so we can get a better understanding of how widespread it currently is in the U.S. It is difficult to predict a potential trajectory of viral spread in the U.S. until those numbers become available. 

But as of now, I have not seen any evidence of disease containment. It will be instructive to see how the situation plays out in other advanced democracies that are coping with a viral outbreak, including South Korea and Europe, to get a better idea of what might happen here.

What advice are you giving your loved ones?
The advice I give my friends and family is to hope for the best, prepare for the worst. We are in uncharted waters.

Institute News

Should you be worried about the never-before-seen coronavirus outbreak?

AuthorSumit Chanda, PhD
Date

February 21, 2020

Here’s what Sumit Chanda, PhD, director of Sanford Burnham Prebys’ Immunity and Pathogenesis Program, has to say about the virus spreading fear around the world.

  1. What is coronavirus?
    Coronaviruses are a large family of viruses common in animals but can leap to humans, causing illnesses ranging from a common cold to severe respiratory diseases such as pneumonia, Middle East respiratory syndrome (MERS), and severe acute respiratory syndrome (SARS).
  2. What is the concern?
    Health experts are monitoring the outbreak first identified in Wuhan City (China), originating at a large seafood and animal market. It appears to be a new type of coronavirus that can be passed human-to-human, and it has caused more than 75,000 infections. New cases have been identified in 26 countries, including the United States. Thousands of people have died. 
  3. Isn’t there a vaccine for the virus?
    Since this is a new coronavirus, there is no vaccine—and developing one can take several years.
  4. Should the rest of the world be worried?
    Given the pace of global travel in today’s world, it’s a reality that the virus is only a plane ride away. International airports, including some in the U.S., are screening passengers from Wuhan City and other Asian cities where the virus has been detected. It’s important to note that SARS and MERS, also coronaviruses, kill up to 30% of the people infected, although it’s too early to know the lethality of the Wuhan coronavirus.

If you’ve traveled to the affected areas—or been in close contact with someone who has—and develop a fever accompanied by coughing, shortness of breath, and/or tightness of the chest, seek medical attention immediately, and do not travel into public spaces.