glioblastoma Archives - Sanford Burnham Prebys
Institute News

Sanford Burnham Prebys expert surveys science on how to treat the most common brain cancer

AuthorGreg Calhoun
Date

October 6, 2025

New editorial recommends a multimodal perspective examining glioblastoma from tumor biology through to surgery

Glioblastoma is one of the most aggressive and treatment-resistant forms of brain cancer. It also is the most common form of cancer that originates in the brain, making research into new and better therapies even more imperative.

Physician–scientist Theophilos Tzaridis, MD, a postdoctoral fellow at Sanford Burnham Prebys Medical Discovery Institute in the lab of Peter Adams, PhD, recently surveyed promising glioblastoma studies after being invited to serve as a guest editor for a special issue of Frontiers in Oncology and Frontiers in Neurology.

More exact and safe surgeries

Tzaridis highlighted two studies focused on improving surgery for glioblastoma, as it continues to be the primary treatment for the disease. The recent publications discussed how to enhance the use of MRI to map out tumors and surrounding tissue, as well as other innovative mapping and monitoring techniques. These approaches would enable neurosurgeons to create better and safer plans for reducing risk of recurrence and avoiding side effects before starting surgery.

Targeted treatments and immunotherapies

Scientists have sought to add treatment options for glioblastoma beyond surgery, radiation therapy and chemotherapy. Some other cancers can be treated with targeted therapies that exploit a unique characteristic of certain tumors, but this approach has yet to yield long-term successes for glioblastoma patients. Tzaridis brought forward a case report of a patient whose tumors were nearly completely cleared by a targeted therapy after chemotherapy was unsuccessful. He suggests that future studies are warranted to identify patient subpopulations that can benefit from these treatments.

Theophilos Tzaridis, MD. Image credit: Sanford Burnham Prebys.

Theophilos Tzaridis, MD, a postdoctoral fellow at Sanford Burnham Prebys Medical Discovery Institute. Image credit: Sanford Burnham Prebys.

Immunotherapies that supercharge the immune system to better detect and eliminate cancer have transformed the treatment of many blood cancers and solid tumors. It has not, however, yet born fruit as an effective treatment for glioblastoma. Tzaridis spotlights a study discussing the potential use of chimeric antigen receptor (CAR) natural killer (NK) cells in glioblastoma rather than the more common CAR T-cell therapies.

The blood brain barrier and brain cancer biology

In addition to demonstrating how research is contributing to improving existing treatments and finding new potential therapies, Tzaridis emphasized the importance of continued studies of brain cancer cell biology and the obstacle to treatment posed by the blood brain barrier. He highlighted two studies focused on overcoming the blood brain barrier along with another two studies regarding cellular models and the use of extracellular vesicles to package and deliver treatments.

“With a multimodal perspective from addressing challenges in neurosurgery to improving our understanding of tumor biology and achieving therapeutic delivery into the brain, we have the best chance of improving survival of patients with this devastating disease,” said Tzaridis.

Institute News

Xueqin Sun awarded $600,000 V Foundation grant to study one of the most common and deadly brain cancers

AuthorGreg Calhoun
Date

September 29, 2025

The new award will fund research regarding a hidden weakness in glioblastoma tumors that could lead to a new treatment

Xueqin (Sherine) Sun, PhD, was awarded a three-year, $600,000 V Foundation for Cancer Research grant to study glioblastoma, one of the most common and deadly brain cancers.

Sun will use the award to follow up on her lab’s research regarding a hidden weakness in glioblastoma tumors that could lead to a new treatment. Her team will focus on tumor protein 53, or p53, which normally prevents tumors by detecting DNA damage so it can be repaired, or the cell can self-destruct.

“Think of p53 as the body’s security guard that protects against cancer,” said Sun. In glioblastoma tumors, however, p53 often is unable to do its job.

In nearly three out of every four glioblastoma tumors, another protein called bromodomain-containing protein 8 (BRD8) locks up p53, preventing a key piece of the body’s natural defense mechanisms from fighting back against the growing threat.

“We discovered a way to break apart BRD8, which could free up p53 and let it fight the cancer again,” said Sun.  

The Sun lab will test this approach using lab-grown glioblastoma cells and mini-brain tumor models created from patient samples.

“Our goal is to advance this approach that may lead to new therapeutic strategies for patients facing this devastating disease,” said Sun.

The V Foundation for Cancer Research was founded in 1993 by ESPN and the late Jim Valvano, North Carolina State University basketball coach, ESPN commentator and member of the Naismith Memorial Basketball Hall of Fame. The V Foundation has funded nearly $400 million in cancer research grants in North America.

Institute News

Brain cancer researcher Jia Zack Shen wins 2022 Eric Dudl scholarship

AuthorMiles Martin
Date

October 18, 2022

For the first time since the pandemic, Sanford Burnham Prebys presented the Eric Dudl Endowed Scholarship Award in person at last week’s Cancer Center Open House. This year’s recipient, selected by leaders at the Cancer Center, was Jia Zack Shen, PhD, a staff scientist in the lab of Charles Spruck, PhD The award pays tribute to Eric Dudl, a postdoctoral researcher who succumbed to cancer in 2006, when he was just 33.

“Eric was ill at such a young age, but he was also very lucky because he knew exactly what his dream job was and what his life meant,” says Shen. “Eric’s compassion and dedication to cancer research has been inspiring and encouraging for our postdocs here at Sanford Burnham Prebys. Thank you to the Dudl family for helping me continue my career here.”

Honoring Eric Dudl

In 2005, Eric Dudl had just begun his postdoctoral research in a cancer lab at Sanford Burnham Prebys, where he was known as kind, helpful and a fast learner. Then, at age 32, he was diagnosed with non-small cell lung cancer. This only fueled his fiery passion for cancer research.

“Even when he was very ill, Eric wanted to make a contribution in the time he had,” says Jim Dudl, MD, Eric’s father. “One day I looked at Eric and asked, ‘Why don’t you take some time off work? Get your energy back and go back in when you feel better?’ He looked up at me and said, ‘Why would I do that? This is the best job in the world!’”

Tragically, Eric Dudl would pass away in 2006, at age 33. The next year, his parents established the Eric Dudl Endowed Scholarship Fund to support young cancer researchers like their son.
“These talented scientists pick up where Eric had to leave off,” says Barbara Dudl, Eric’s mother.

Eric Dudl

Eric Dudl

“We are so grateful to the Institute for their compassion for Eric during his illness and helping us create this scholarship. The scientists who are now working on new discoveries might one day save the life of someone like Eric.”

The award presentation was emceed by Cosimo Commisso, PhD, and featured comments from Eric’s parents, as well as his brother, Bret.

“This scholarship fund is the best way we can honor Eric, because he was so passionate about education and supporting others,” says Bret. “The fact that he now helps other postdocs further their work to fight cancer is exactly what he would have wanted.”

Meet the recipient: Jia Zack Shen

Shen started at the Institute as a postdoctoral researcher in 2016, winning a Fishman Fund Award that year. He has since transitioned to a permanent role as a staff scientist, and the funding from this award will help continue to support his role.

“Sanford Burnham Prebys has a great, noncompetitive atmosphere, and the resources we have here are excellent,” says Shen. “Combining cancer research with the drug discovery capabilities we have at SBP is my dream.”

Shen’s research focuses on killing cancer stem cells by shutting off their ability to self-renew and by promoting a response from the immune system, delivering what Shen and his colleagues call a “one-two punch.” Shen has been working specifically on glioblastoma, one of the most aggressive brain cancers.

“Glioblastoma is one of the most devastating diseases, and there is a desperate need for better ways to treat it,” says Shen. “I am working hard to leverage the immune system to fight glioblastoma and save thousands of lives.”

Institute News

Boosting immunotherapy in aggressive brain cancer

AuthorMiles Martin
Date

November 3, 2021

Researchers from Sanford Burnham Prebys have collaborated the University of Pittsburgh Cancer Institute to reveal a new approach to enhance the effects of immunotherapy in glioblastoma, one of the most aggressive and treatment-resistant forms of brain cancer.

The study, published recently in Cancer Discovery, describes a novel method to ‘turn off’ cancer stem cells—the malignant cells that self-renew and sustain tumors—enabling the body’s own defense system to take charge and destroy tumors.

“Tumors are more than just masses of cells—each one is a complex system that relies on a vast network of chemical signals, proteins and different cell types to grow,” says senior author Charles Spruck, PhD, an assistant professor at Sanford Burnham Prebys. “This is part of why cancer is so difficult to treat, but it also presents us with opportunities to develop treatment strategies that target the machinery powering tumor cells rather than trying to destroy them outright.”

Glioblastoma is an extremely aggressive form of cancer that affects the brain and the spinal cord. Occurring more often in older adults and forming about half of all malignant brain tumors, glioblastoma causes worsening headaches, seizures and nausea. And unfortunately for the thousands of people who receive this diagnosis each year, glioblastoma is most often fatal.

“We haven’t been able to cure glioblastoma with existing treatment methods because it’s just too aggressive,” says Spruck. “Most therapies are palliative, more about reducing suffering than destroying the cancer. This is something we hope our work will change.”

Immune checkpoint inhibitors—which help prevent cancer cells from hiding from the immune system—can be effective for certain forms of cancer in the brain, but their results in glioblastoma have been disappointing. The researchers sought a way to improve the effects of these medications.

“Modern cancer treatment rarely relies on just one strategy at a time,” says Spruck. “Sometimes you have to mix and match, using treatments to complement one another.”

The researchers used genomic sequencing to investigate glioblastoma stem cells. These cells are the source of the rapid and consistent regeneration of glioblastoma tumors that make them so difficult to treat.

The team successfully identified a protein complex called YY1-CDK9 as essential to the cells’ ability to express genes and produce proteins. By modifying the activity of this protein complex in the lab, the team was able to improve the effectiveness of immune checkpoint inhibitors in these cells. 

“Knocking out this transcription machinery makes it much more difficult for the cells to multiply” says Spruck. “They start to respond to chemical signals from the immune system that they would otherwise evade, giving immunotherapy a chance to take effect.” 

While the approach will need to be tested in clinical settings, the researchers are optimistic that it may provide a way to improve treatment outcomes for people with glioblastoma. 

“What our results tell us is that these cells are targetable by drugs we already have, so for patients, improving their treatment may just be a matter of adding another medication,” adds Spruck. “For a cancer as treatment-resistant as glioblastoma, this is a great step forward.”

Institute News

Enzymes could be key for brain cancer and Alzheimer’s disease

AuthorGuest Blogger
Date

December 9, 2014

This post was written by Janelle Weaver, PhD, a freelance writer.

Animals ranging from fish to humans produce a vitamin-A metabolite called retinoic acid, which plays an important role in growth and embryonic development and protects against diseases such as cancer. By regulating the activity of key genes, retinoic acid causes immature cells called embryonic stem cells to turn into mature, specialized cells such as neurons. “Neurons—the building blocks of the nervous system—are particularly important cell types in therapy, due to the fact that they normally don’t reproduce or replace themselves after they become damaged,” said Laszlo Nagy, MD, PhD, director of the Genomic Control of Metabolism Program and professor in the Diabetes and Obesity Research Center at Sanford-Burnham’s Lake Nona campus. “Despite their crucial role, we still have a limited understanding regarding the molecular programs that coordinate their functionality.” Continue reading “Enzymes could be key for brain cancer and Alzheimer’s disease”