Human Genetics Program Archives - Sanford Burnham Prebys
Institute News

Honoring Hud Freeze and colleagues for literally writing the book on glycobiology

AuthorScott LaFee
Date

November 11, 2024

Glycobiology is the study of the structure, biosynthesis and biology of glycans — carbohydrates or sugars that cover the surfaces of all cells and many proteins.

In recent years, understanding and recognition of the importance of glycans has grown dramatically.

They are, among other things, critical to the maintenance of cell and tissue structure and integrity. Their dysfunction is linked to a growing list of human diseases. They have played surprising roles in human evolution.

Beginning in 1999, a cohort of researchers working in emerging field of glycobiology created the first textbook on the subject: “Essentials of Glycobiology.”  The fourth edition was published in 2022.

The Society for Glycobiology recently honored the editors for their ongoing work with its 2024 Distinguished Service Award. Among the honorees, Hudson Freeze, PhD, director of the Sanford Children’s Health Research Center at Sanford Burnham Prebys and a renowned expert in congenital disorders of glycosylation, a group of rare metabolic disorders that primarily afflict children.

glycobiology cover 2022
Institute News

SBP scientist honored by the American Society for Bone and Mineral Research

AuthorMonica May
Date

September 28, 2018

José Luis Millán, PhD, professor in the Human Genetics Program at Sanford Burnham Prebys Medical Discovery Institute (SBP), has received the 2018 American Society for Bone and Mineral Research (ASBMR) Lawrence G. Raisz Award for his outstanding achievements in pre-clinical and translational research. 

Millán has dedicated his career to understanding the mechanism of initiation of skeletal and dental mineralization. His pioneering research has led to the first-ever FDA-approved drug for a rare soft bone disease, hypophosphatasia (HPP); and a second drug candidate developed through a research collaboration with Daiichi Sankyo Company, Limited (Daiichi Sankyo) that entered a Phase 1, first-in-human clinical trial in 2017

ASBMR’s award is named in honor of Lawrence G. Raisz, MD, a prominent scientist, mentor, teacher and clinician in the field of bone and mineral metabolism. Raisz was a founding member of ASBMR and the first editor-in-chief of the Journal of Bone and Mineral Research. 

“Lawrence G. Raisz deeply influenced the skeletal mineralization field, so it is a true honor to receive an award in his memory,” says Millán. “In accepting this award, I want to thank the many individuals who enabled our achievements—from the National Institutes of Health (NIH), which has generously funded our research since the 1980s, to the collaborators and lab members who were instrumental in our scientific advances. I also want to thank SBP for providing state-of-the-art technologies that were invaluable to our research.”

Millán was presented the award onstage today at the ASBMR 2018 Annual Meeting in Montreal. 
 

Interested in keeping up with SBP’s latest discoveries, upcoming events and more? Subscribe to our monthly newsletter, Discoveries.

Institute News

New marker can help sick kids

Authorsgammon
Date

January 12, 2016

There are more than 7,000 rare diseases, but congenital disorders of glycosylation (CDGs) are among the cruelest. One particular condition, called ALG1, can have dire consequences. Affected children face intellectual disabilities, seizures, skeletal issues, facial deformities and many other problems.

“These are really sick kids,” says Hudson Freeze, PhD, professor and director of the Human Genetics Program at SBP. “Almost 45 percent die in the first several years, and many of these children will have severe developmental delays.”

Glycosylation is a critical biological process, in which sugar molecules are added to proteins to make them function properly. A protein that’s improperly glycosylated is like a car without a steering wheel – it simply can’t perform its job.

To make matters worse, correctly diagnosing ALG1 and other CDGs can be a long, stressful and expensive process. Sometimes families must wait months or years to find out what’s causing their child’s condition. And while genomic sequencing is beginning to make a difference, more must be done to diagnose sick kids and help parents make informed decisions.

One potential solution is disease markers – biochemical signatures that identify particular conditions. Armed with this information, clinicians could accelerate the diagnostic process with a simple blood test.

A Unique Sugar Molecule

Researchers may have found a marker for ALG1 and possibly other CDGs. In a paper published in the journal Clinical Chemistry, the team describes a unique sugar molecule that is particularly common in children with ALG1.

The sugar, a type of N-tetrasaccharide, was discovered by Miao He, PhD, who co-directs the Metabolic Disease Laboratory at The Children’s Hospital of Philadelphia. However, he had only a few patients and she was unclear on the molecule’s origin. Working closely with Freeze’s lab, she started hunting for the aberrant sugar in Freeze’s large collection of proven ALG1 patients.

“We looked at a number of kids with ALG1 and kept finding this abnormal sugar,” says Freeze. “It’s a sugar chain that doesn’t normally exist in nature. You can perform a very simple test, that costs just a few hundred dollars, and if you see this abnormality, you could get genetic confirmation and turn it around quickly.”

The beauty of this marker is that it narrows the field for genomic analysis. Rather than looking at a patient’s entire genome – billions of base pairs and more than 20,000 genes – clinicians can focus on the gene that may be causing the disorder, dramatically accelerating the diagnostic process.

Quickly diagnosing a rare disorder can help get kids into treatment, if treatments are available. But it can also help parents navigate the family planning process and inform prenatal testing. In the big picture, disease markers could be a critical adjunct for genomic testing.

“Genome and exome sequencing is the future, but it will require some biochemical confirmation to support the genomic test,” notes Freeze. “This marker can really help us shortcut the long diagnostic odyssey many parents must go through.”

Institute News

Explaining your science

Authorsbraun
Date

August 28, 2015

 

“As scientists, it’s our job to communicate to the public the importance and benefits of biomedical research in plain language. The Alan Alda Center is nationally known for helping us do that. Their programs work, if we work with them.  Let’s get started.” — Hudson Freeze, PhD, director of the Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute (La Jolla, California).

Register for the workshop at sbpdiscovery.org/alda

 

Continue reading “Explaining your science”

Institute News

Sanford-Burnham presents at the 2014 Society for Neurosience Meeting

Authorsgammon
Date

November 13, 2014

The Society for Neuroscience’s 44th annual meeting is the premier venue for neuroscientists to present emerging science, learn from experts, forge collaborations, and learn about new technologies and tools. Sanford-Burnham has several dynamic research programs in neuroscience, and below are our presentations scheduled for this year’s event. Continue reading “Sanford-Burnham presents at the 2014 Society for Neurosience Meeting”