Jorge Moscat Archives - Sanford Burnham Prebys
Institute News

Cancer’s final frontier: the tumor microenvironment

AuthorMonica May
Date

September 3, 2019

Cancer researchers are setting their sights on a new kind of cancer treatment that targets the tumor’s surrounding environment, called the tumor microenvironment, in contrast to targeting the tumor directly. 

To learn more about this approach, we spoke with cancer experts Jorge Moscat, PhD, director and professor in the Cancer Metabolism and Signaling Networks Program at Sanford Burnham Prebys; and Maria Diaz-Meco, PhD, professor in the Cancer Metabolism and Signaling Networks Program at Sanford Burnham Prebys. Both scientists recently authored a review article centered on a family of cancer-linked proteins that regulate the tumor’s microenvironment. The paper was published in Cancer Cell

What is the tumor microenvironment exactly? 
Moscat: Just like every person is surrounded by a supportive community—their friends, family or teachers—every tumor is surrounded by a microenvironment. This ecosystem includes blood vessels that supply the tumor with nutrients; immune cells that the tumor has inactivated to evade detection; and stroma, glue-like connective tissue that holds the cells together and provides the tumor with nutrients.

Diaz-Meco: These elements are similar to the three legs of a stool. If we remove all three legs, we can deliver a deadly blow to the tumor. FDA-approved drugs exist that target blood vessel growth and reactivate the immune system to destroy the tumor. The final frontier is targeting the stroma.

When did scientists realize it’s important to focus on the tumor’s surroundings—not the tumor itself? 
Diaz-Meco: Scientists have known for more than a century that the tumor’s surroundings are different from normal cells. The tissue surrounding a tumor is inflamed—tumors are often called “wounds that never heal”—and their metabolism is radically different from healthy cells. 

Moscat: The discovery of oncogenes—genes that can lead to cancer—in the 1970s shifted the field’s focus to treatments that target the tumor directly. These targeted treatments work incredibly well, but only for a short time. Cancer researchers are realizing that tumors quickly adapt to this roadblock and become treatment resistant. In addition, many oncogenes are difficult to target, earning the title “undruggable.” As a result, cancer researchers are returning their focus to the tumor microenvironment—especially the stroma. Only a handful of stroma-targeting drugs are in development. None are FDA approved.

Which cancers could benefit most from a stroma-targeting drug? 
Moscat: Pancreatic, colorectal and liver cancers stand to benefit most from a stroma-targeting drug. For example, 90% of a pancreatic tumor consists of stroma—not cancer cells. Combined, these cancers are responsible for more than 20% of all cancer deaths in the U.S. each year. 

What is the focus of your lab’s research? 
Diaz-Meco: Our lab studies the cross talk between tumors and their environment. This conversation is very complex. In addition to “talking” with the tumor, the stroma also “speaks” with the immune system. We are working to map these interactions so we can create drugs that silence this conversation—or change it. For example, we recently showed—in a mouse model that faithfully recapitulates the most aggressive form of human colorectal cancer—that by altering the stroma’s interactions with the immune system, we might make tumors vulnerable to immunotherapy. 

What do new insights into the tumor microenvironment mean for cancer drug development? 
Moscat: It’s likely that the ultimate cancer “cure” won’t be just one drug that kills the tumor cells, but a combination of therapies. I expect this will be a three-part combination treatment that stops blood vessel growth, activates the immune system to attack the tumor and targets the stroma. 

Additionally, this research shows that experimental models of cancer drug development need to take the tumor microenvironment into account. Many current models use mice that lack an immune system—in order to get the tumor to grow—or focus on the tumor in isolation. Based on our knowledge of the tumor microenvironment, this isn’t an accurate representation of human disease. 

Diaz-Meco: In our lab, we have created several animal models of cancers that preserve the immune system and mirror tumor progression. In addition to better modeling human disease, this also allows us to study cancer from its earliest beginnings. This work could lead to early interventions—before the cancer has become large and hard to treat.

Anything else you’d like to add? 
Moscat: We are truly in the golden age of cancer biology. We understand more than we ever have before. New technologies are allowing us to obtain an unprecedented amount of information—we can even map every gene that is “turned on” in a single cancer cell. I am incredibly hopeful for the future. 

Learn more about the future of cancer treatment by attending our next “Conquering Cancer” event at the Fleet Science Center. Details

Institute News

How tumors shape their environment for their benefit

AuthorSusan Gammon
Date

June 21, 2017

In a new review article published in Current Opinions in Cell Biology, Professors Jorge Moscat, Maria Diaz-Meco and their graduate student Miguel Reina-Campos summarize evidence from their labs and others of how tumor cells play a large part in converting their surroundings to promote cancer progression. The research is important for developing therapies aimed at the area surrounding a tumor—the stroma—to reduce the likelihood of drug resistance, which is the main problem that today’s cancer therapies face.

“Although tumor cells carry mutations that are responsible for their altered behavior, the ability of tumors to grow and metastasize is controlled to a surprising extent by contributions from elements supplied by normal host (patient) cells,” says Diaz-Meco. “Blood vessels that provide nutrients to tumors are a good example of host elements that are critical for tumor growth and metastasis, but other host components such as fat cells, fibroblasts, and immune cells also contribute in important ways to tumor progression. These host components are known collectively as the tumor stroma or tumor microenvironment (TME).”

Different types of host stromal cells in the TME also contribute to a tumor’s ability to use different energy sources, and in turn are themselves influenced by the tumor’s metabolic activity. Reina-Campos points to cancer associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) as two cell types that interact with pancreatic cancer cells. He explains, “Under nutrient stress, PSCs can use a cell process called autophagy to produce the amino acid alanine, while CAFs produce the amino acid glutamine. Both of these amino acids serve as rich energy sources for the pancreatic tumor cells, which otherwise would have to rely on glucose—a less potent nutrient source.”

In addition to providing nutrients, CAFs and PSCs are also the source of fibrous material known as the extracellular matrix (ECM). The ECM is a potent stimulus for tumor progression and metastasis and is a particularly abundant component of pancreatic tumors. The authors stress that the properties of CAFs and PSCs in the TME are different from those of normal fibroblast and stellate cells, leading to the important concept that the stromal cells are strongly influenced by signals from the tumor cells, and reciprocally (once educated by the tumor cells) can sustain their growth to higher levels of malignancy.

Immune cells are another key TME component whose properties are profoundly influenced by tumor cells, and in turn have a significant ability to promote tumor growth. Moscat explains, “Given that the normal job of immune cells is to seek out and destroy abnormal invaders, the ability of tumors to convert immune cells into tumor promoting agents is really striking. Several different types of immune cells are re-programmed by tumors as a means of suppressing an anti-tumor immune response and generating a tumor promoting response”.

Overall, these studies reveal a number of ways by which tumor cells signal to stromal cells and, conversely, by which stromal cells signal back to tumors. Further defining these tumor-to-stroma and stroma-to-tumor signals can lead to deeper understanding of mechanisms of tumor-stroma crosstalk. Ideally, such mechanisms could then be inhibited by drugs as a means of improving tumor therapy, possibly in combination with other novel forms of cancer therapy that boost immune function.

Read the paper online here.

Institute News

Cancer metabolism symposium highlights hot area in cancer research

AuthorJessica Moore
Date

June 27, 2016

The third Cancer Metabolism Symposium held at Sanford Burnham Prebys Medical Discovery Institute (SBP) June 22-23, 2016, attracted a full house of attendees from across San Diego. Its success likely results from the impressive roster of speakers invited by organizers Jorge Moscat, PhD, professor and director of the Cancer Metabolism and Signaling Networks Program, and Maria Diaz-Meco, PhD, also a professor in that program. The presenters included numerous thought leaders in the field from such prestigious institutions as the Koch Institute for Integrative Cancer Research at MIT, the Dana Farber Cancer Institute at Harvard Medical School, and Memorial Sloan Kettering Cancer Center.

The aim of research on cancer metabolism is simple—to find ways to starve tumors of the fuels and building blocks they need to grow. This strategy is gaining attention (see this recent New York Times feature) because of the increasing evidence that cancer cells obtain and use nutrients differently than normal cells. Plus, there appear to be a few common ways in which cancer cells’ metabolism becomes deranged, making it a much simpler target than oncogenic mutations, which tumor cells accumulate almost exponentially.

Several new drugs that interfere with metabolism have shown promise in clinical trials for numerous types of cancer. Nonetheless, there’s still a lot to learn. Since tumor cells rely on the same metabolic pathways as normal cells, researchers must pinpoint cancer’s weaknesses—the enzymes and nutrients on which cancer cells rely far more than normal cells. Many of these differences were discussed at the symposium, opening doors for new ways to stop cancer.

Institute News

High levels of protein p62 predict liver cancer recurrence

AuthorJessica Moore
Date

May 19, 2016

CANCER METABOLISM AND SIGNALING NETWORKS PROGRAM

New research from SBP and UC San Diego shows that high levels of the protein p62 in human liver samples are strongly associated with cancer recurrence and reduced patient survival. p62 was also found to be required for liver cancer to form in mice. Continue reading “High levels of protein p62 predict liver cancer recurrence”

Institute News

SBP presents at American Association for Cancer Research’s annual meeting

AuthorKristen Cusato
Date

May 10, 2016

Deputy Director of the NCI-designated Cancer Center, Jorge Moscat, PhD, and Cosimo Commisso, PhD, assistant professor in the Center, presented at the AACR conference in New Orleans.

Moscat presented at the session titled “Metabolic Interplay between Tumor and Microenvironment.”

“Cancer cells have to adapt their metabolism to survive nutrient deprivation and several stress conditions in their tumor microenvironment. For this they put in motion a process called autophagy whereby they get rid of toxic intracellular molecules and organelles and generate nutrients that allow them to survive,” said Moscat.

“Central to this process is a protein called p62 that was discovered in collaboration with my SBP colleague Maria Diaz-Meco. This protein is upregulated in, for example, liver cancer, whose mortality has increased dramatically over the last 10 years, in marked contrast to many other neoplasias that have shown a significant decrease in mortality.

“We presented new compelling data from human patients, mouse models and cell culture studies demonstrating that inactivation of p62 in cancer liver cells dramatically reduced the incidence and aggressiveness of hepatocellular carcinoma. Therefore, p62 is a novel and potentially actionable therapeutic target in liver cancer,” added Moscat.

Moscat said he was impressed at AACR by the number and quality of research studies linking the possibility of treating patients by a combined strategy of targeting cancer metabolism and the immunological tumor microenvironment.

He also spoke to ecancer.tv, an online provider of oncology news, about his research. Watch the video here.

Moscat is co-chair of a symposium on related research in cancer metabolism to that will be held June 22-23 at SBP’s La Jolla campus.

Commisso’s presentation was featured in a special session on pancreatic cancer that aimed to stimulate opportunities for collaboration between Pancreatic Cancer Action Network-AACR grantees and others in the field.

“The research that I presented was focused on a novel drug target in pancreatic cancer discovered recently by my lab,” said Commisso.

“We have found that an ion transporter that regulates pH homeostasis is critical to pancreatic cancer cell survival. This previously uncharacterized transporter plays a role in maintaining amino acid supply in tumor cells that harbor a mutation in the oncogene known as Ras, which is mutated in >90% of pancreatic tumors.

“Our future work is focused on exploring the role of this transporter in preclinical models and developing new approaches to inhibit this druggable target,” added Commisso.

He called the AACR meeting “a remarkable opportunity for cancer researchers to come together and share their exciting discoveries.”  Dr. Commisso also said it was a good opportunity to connect with colleagues and friends to develop and nurture scientific collaborations, to create, progress and build.

Commisso will also present at the 2016 PancWest Symposium in September at the Moores Cancer Center at UCSD.

Institute News

Molecular “brake” prevents excessive inflammation

AuthorGuest Blogger
Date

February 25, 2016

Inflammation is a catch-22: the body needs it to eliminate invasive organisms and foreign irritants, but excessive inflammation can harm healthy cells, contributing to aging and sometimes leading to organ failure and death. A study published in Cell, co-authored by Jorge Moscat, PhD, and Maria Diaz-Meco, PhD, professors in SBP’s NCI-designated Cancer Center, in collaboration with the laboratory of Michael Karin, PhD, at the University of California, San Diego School of Medicine, shows that a protein known as p62 acts as a molecular brake to keep inflammation in check and avoid collateral damage. Continue reading “Molecular “brake” prevents excessive inflammation”

Institute News

Pathway that controls cancer cell proliferation discovered

Authorsgammon
Date

August 13, 2015

In a new study by SBP, researchers have identified a novel kinase cascade that regulates mTORC1, a protein complex implicated in the control of cancer cell growth in response to nutrients. The study, published in Cell Reports, provides further insight into the control of mTORC1 activation, and highlights several new potential drug targets to treat human pathologies linked to mTORC1 deregulation. Continue reading “Pathway that controls cancer cell proliferation discovered”

Institute News

Sanford-Burnham presents at AACR April 19-22

Authorsgammon
Date

April 21, 2015

 

The American Association of Cancer Research (AACR) Annual Meeting, held April 18-22 in Philadelphia, will attract approximately 18,000 attendees from around the world. They are coming to hear from an outstanding roster of speakers, hundreds of live talks, and more than 6,000 proffered papers from scientists and clinicians around the world. This year’s theme, “Brining Cancer Discoveries to patients,” highlights the need to link laboratory discoveries to treatments for the purpose of finding cancer cures. Continue reading “Sanford-Burnham presents at AACR April 19-22”

Institute News

New study sheds light on cancer stem cell regulation

Authorsgammon
Date

February 5, 2015

Researchers at Sanford-Burnham have discovered a precise stem cell signaling process that can lead to intestinal tumors if disrupted. The findings add to our understanding of how stem cells give rise to tumors and identify specific stem cell molecules that may be targeted to prevent the onset, progression, and recurrence of intestinal cancers. The results of the study appear online in Cell Reports today. Continue reading “New study sheds light on cancer stem cell regulation”

Institute News

A new link between obesity, inflammation, and insulin resistance

Authorsgammon
Date

July 17, 2014

A new study by researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) has identified a new signal that triggers the events leading to insulin resistance in obesity. The signal causes inflammation in adipose tissue and leads to metabolic disease. The study, published July 17 in Cell Metabolism, suggests that blocking this signal may protect against the development of metabolic disease, type 2 diabetes, and other disorders caused by obesity-linked inflammation. Continue reading “A new link between obesity, inflammation, and insulin resistance”