liver cancer Archives - Sanford Burnham Prebys
Institute News

A monster, MASH

AuthorGreg Calhoun
Date

January 28, 2025

Scientists show how the advanced form of fatty liver disease has monstrous effects on liver cancer risk

Liver cancer has proven to be a tough beast to tame. Experts expected rates of the cancer to decrease following the development of the hepatitis B vaccine in the 1980s, which reduced one of the major risk factors for the disease.

Research in Taiwan showed that its universal infant hepatitis B vaccination program led to young adults experiencing a 35.9% reduction in cases of hepatocellular carcinoma (HCC), the most common liver cancer.

Despite innovation leading to the world’s first cancer-preventing vaccine, incidence of HCC has been on the rise due to a spike in fatty liver disease over recent decades. Lifestyle factors such as high-calorie diets, excessive alcohol consumption and minimal exercise — along with genetic predispositions — can lead to problematic changes in the liver, heart and kidneys.

Specifically in the liver, growing deposits of fat in the tissue can lead over time to an advanced form of fatty liver disease marked by chronic inflammation and the accumulation of thickened scar tissue, a condition known as metabolic-associated steatohepatitis (MASH). MASH significantly increases a patient’s risk of developing HCC.

Debanjan Dhar, PhD, headshot outside

Debanjan Dhar, PhD, is an associate professor in the Cancer Genome and Epigenetics Program.

In a paper published January 1, 2025, in Nature, scientists at Sanford Burnham Prebys, the University of California San Diego, Curtin University, the University of Pennsylvania and The Liver Cancer Collaborative, demonstrated that MASH damages the DNA of liver cells. The study also linked these changes to the development of liver cancer.

Peter Adams profile photo in lab

Peter Adams, PhD, is the director of the Cancer Genome and Epigenetics Program.

“DNA damage from MASH causes liver cells to stop dividing and enter a zombie-like state called senescence,” said Debanjan Dhar, PhD, associate professor in the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys and coauthor on the study. “This study’s results demonstrate that some of these cells later exit senescence and are likely to become cancerous due to their accumulation of damage and mutations.”

“In the future, we can apply what we’ve learned to study potential opportunities to prevent or repair DNA damage from MASH to reduce patients’ risk of developing liver cancer,” said Peter Adams, PhD, director of the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys and coauthor on the study.


Michael Karin, PhD, Distinguished Professor in the Department of Pharmacology at the University of California San Diego School of Medicine, is the senior and corresponding author on the study.   

Li Gu, PhD, a former postdoctoral fellow in the Karin lab, shares first authorship of the study with visiting scientist Yahui Zhu. 

Additional authors include:

  • Marcos Teneche and Souradipta Ganguly from Sanford Burnham Prebys
  • Shuvro Nandi, Maiya Lee, Kosuke Watari, Breanna Bareng, Masafumi Ohira, Yuxiao Liu, Sadatsugu Sakane, Mojgan Hosseini, Tatiana Kisseleva, Ludmil Alexandrov, Consuelo Sauceda and David Gonzalez from the University of California San Diego
  • Rodrigo Carlessi and Janina Tirnitz-Parker from Curtin Universit
  • The Liver Cancer Collaborative
  • M. Celeste Simon from the University of Pennsylvania
Institute News

Fishman Fund Fellowship awarded to Cynthia Lebeaupin for liver cancer research

AuthorMiles Martin
Date

June 8, 2022

Cynthia Lebeaupin, PhD was recently awarded the 2022 Fishman Fund Fellowship, a postdoctoral award unique to Sanford Burnham Prebys.

The award provides a boosted stipend to exceptional postdocs from the Institute who have a demonstrated research track record and whose work shows significant potential for future breakthroughs.

“It’s an honor to have been selected for such a prestigious award from the Institute, says Lebeaupin, who works in the lab of Randal J. Kaufman, PhD “The resources and people at Sanford Burnham Prebys are incredible and I’m happy to be able to continue my research here.”

Sanford Burnham Prebys introduced the Fishman Fund Awards in 2001 to honor of the Institute’s founders, Dr. William and Lillian Fishman. The fund was established by Reena Horowitz and the late Mary Bradley, longtime supporters of the Institute.

“The Fishmans created an Institute that fosters a collaborative, inspirational atmosphere for postdoc students,” said Horowitz at the 2021 Fishman Fund Awards. “The Fishmans understood that support for new science is a brilliant research investment.”

Lebeaupin has been at the Institute since 2018, and this is not her first honor from the Fishman Fund. In 2021, she was awarded a Fishman Fund Career Development Award, a smaller prize offered to several postdocs each year. She also completed an internship at the Institute’s former Lake Nona campus in 2014.

“I’ve had an affinity for Sanford Burnham Prebys for a long time,” says Lebeaupin. “I knew once I met Dr. Kaufman and everybody on campus that this was the best place to complete my postdoc.”

Lebeaupin’s research focuses on a growing and pressing problem in medicine – liver cancer. One of the major risk factors for developing liver cancer is fat accumulation in the liver, known as fatty liver disease. Increases in obesity rates over the last several decades have led to a dramatic increase in fatty liver disease.

Fatty liver disease is increasing at an alarming rate, and unfortunately, it’s here to stay,” says Lebeaupin. “My research is figuring out how fatty liver disease progresses to liver cancer, so we can use this knowledge to help prevent it.” 

In particular, Lebeaupin is working on exploring how cells respond to fatty liver disease over time. She discovered that a molecule that helps liver cells protect themselves from short-term stress can promote cancer in the long-term. She has now moved into studying the system in human tissues.

“This research is exciting because we aim to translate our discoveries from the bench to the bedside,” says Lebeaupin. “What I hope to do in the future is use new technologies on liver samples from patients so we can identify what’s actually going on in liver diseases.”

Institute News

How cholesterol-lowering drugs ameliorate fatty liver disease

AuthorJessica Moore
Date

October 27, 2016

Nonalcoholic fatty liver disease (NAFLD) is quietly becoming an epidemic alongside obesity—up to 20% of people in Western countries have it. Though NAFLD, the mildest of a spectrum of liver diseases characterized by excess fat in liver cells, has no symptoms at first, it increases risk for liver cancer and can worsen to nonalcoholic steatohepatitis (NASH) or even liver failure.

There are no specific treatments for NAFLD, but cholesterol-lowering drugs called statins appear to slow its progression to more serious liver inflammation and fibrosis/scarring, characteristics of NASH. However, they haven’t been widely adopted, in part because of concerns about statins’ potential liver toxicity, though recent analyses suggest that severe toxicity is rare.

Now, a study co-led by Timothy Osborne, PhD, professor and director of the Integrative Metabolism Program, and published in Scientific Reports, outlines the molecular pathway through which statins break down fat stores in the liver.

“We show directly that these drugs reduce the amount of fat molecules and cholesterol in the liver in an animal model of NAFLD,” said Osborne. “Our results provide support for using statins to treat NAFLD itself, even if patients’ serum cholesterol isn’t dangerously high.”

The experiments were initiated by Young-Kyo Seo, PhD, now a professor at the Ulsan National Institute of Science and Technology, while he was a postdoc in Osborne’s laboratory. The study was based on previous work that found statins activate a protein called SREBP-2, a transcription factor that activates genes to regulate cholesterol balance.

To figure out how statins work on liver cells, the team searched SREBP-2’s target genes for enzymes that break down fat molecules and found PNPLA8, which splits certain fat molecules into pieces that regulate cell signaling. Further experiments showed that PNPLA8 helps liver cells break down stored fat molecules.

The new study provides some hints as to PNPLA8’s mechanism. Statins are known to enhance a cellular recycling process called autophagy, which breaks down cell parts—such as lipid droplets, the site of fat storage—for energy and re-use. The new results suggest that this may depend on PNPLA8’s ability to target the autophagy machinery directly to lipid droplets.

“This is the first time PNPLA8 has been implicated in freeing fat from liver cells,” Osborne commented. “Looking in more detail at how it mobilizes fat stores will give us an idea of whether it might be a good drug target.”

Institute News

High levels of protein p62 predict liver cancer recurrence

AuthorJessica Moore
Date

May 19, 2016

CANCER METABOLISM AND SIGNALING NETWORKS PROGRAM

New research from SBP and UC San Diego shows that high levels of the protein p62 in human liver samples are strongly associated with cancer recurrence and reduced patient survival. p62 was also found to be required for liver cancer to form in mice. Continue reading “High levels of protein p62 predict liver cancer recurrence”

Institute News

Blocking RANTES may slow growth of liver cancer

AuthorJessica Moore
Date

May 16, 2016

Liver cancer is often deadly—less than 20% of patients survive five years—and it’s the leading cause of cancer-related deaths worldwide. And things aren’t getting better. Between the prevalence of hepatitis C and an escalating rate of obesity that leads to fatty liver disease and potentially cancer, new treatments are desperately needed for these cancer patients. Continue reading “Blocking RANTES may slow growth of liver cancer”

Institute News

Researchers find new method to halt the advance of liver cancer

Authorsgammon
Date

July 24, 2015

A new study by researchers at SBP, the National Cancer Institute, and the Chulabhorn Research Institute has found that blocking the activity of a key immune receptor, the lymphotoxin-beta receptor (LTβR), reduces the progression of liver cancer. The results, published recently in the online edition of Gut, could provide new treatment strategies for the disease, which is the third leading cause of cancer-related deaths worldwide. Continue reading “Researchers find new method to halt the advance of liver cancer”