Stephen Gardell Archives - Sanford Burnham Prebys
Institute News

Metabolomics reveals new insight into human health and fitness

AuthorKyle C. Ziegler
Date

May 9, 2017

Researchers and graduate students from across the country recently gathered for the fourth annual metabolomics symposium organized by Sanford Burnham Prebys Medical Discovery Institute (SBP) and the University of Florida’s Southeast Center for Integrated Metabolomics (SECIM). Metabolomics is a burgeoning technology platform that provides advanced research capabilities to analyze and quantify metabolite levels found in the human body.  Metabolites are the enormous set of small molecules that are the “currency of life”.  Measuring the amounts of metabolites in blood and elsewhere can enable early detection of disease and yield powerful insight on how the body responds to a particular drug treatments. In the future, this kind of molecular profiling may be used by physicians to help make personalized medicine a reality. Noted speakers shared how metabolomics advances their research interests.

  • There are literally hundreds of thousands of chemically distinct entities that are present in every cell in the brain and each can be modified based on the exposure or overuse of drugs. Jonathan Sweedler, PhD, from the University of Illinois, uses advanced technologies to characterize small molecules such as metabolites in single brain cells. This pioneering capability quantifies neuropeptides and maps signaling pathways involved in wide range of brain functions and behaviors.
     
  • Cancer cells are defined by their ability for uncontrolled growth. Gary Patti, PhD, from Washington University at St. Louis used metabolomics technologies to pinpoint a new source of energy that cancer cells use to multiply. Patti’s team found that cells use a by-product of glucose metabolism – lactate – long regarded as waste, as an energy source and a vehicle to transfer electrons to make building blocks essential for cell growth. The findings could lead to new drug targets to decrease the availability of ingredients necessary for tumor growth.
     
  • Charles Burant, MD, PhD, of the University of Michigan, studies the molecular underpinnings of cardiorespiratory fitness to understand individual response to exercise, diet and weight loss.  The overarching goal is to individualize interventions to improve a person’s metabolic health and longevity. Using metabolic and genetic profiling, Dr. Burant analyzes the genetic drivers that are responsible for differences in lung capacity, aging skeletal muscle and to gain insight into the underlying biology in diabetes, cardiovascular disorders and metabolic syndrome.
     
  • SBP researcher Steve Gardell, PhD, enlists metabolomics to study nicotinamide adenine dinucleotide (NAD) – a metabolite that plays a pivotal role in many different biological pathways.  Dr. Gardell uses genetic models and small molecules to drive up the levels of NAD in cells and explore the accompanying benefits on health, fitness and longevity. 
     
  • Loss of muscle mass occurs with aging or from disuse due to an acute illness.  The effect can lead to decreased mobility and physical functioning. Paul Coen, PhD, at the Translational Research Institute at Florida Hospital, uses metabolomics to find out why older adults don’t recover as well, even with exercise, after being inactive. Coen’s team is analyzing muscle biopsies from bedrest study participants to understand molecular changes in the mitochondria – the energy factories in muscle cells. Their goal is to develop therapies that re-stimulate energy production in muscles and aid recovery after disuse.

 

 

Institute News

21st Century Cures Act will benefit SBP in Lake Nona, according to Orlando Medical News

Authorjmoore
Date

January 27, 2016

A recent article highlighted how the federal 21st Century Cures Act will benefit Orlando-area research institutes, including SBP. The legislation, which was passed by the House of Representatives in July, would promote medical research and accelerate the translation of discoveries into new drugs and medical devices by increasing funding for the National Institute of Health (NIH) and making research and healthcare policy changes.

The 21st Century Cures Act, which remains to be passed by the Senate, calls for annual increases in the stagnating budget for the NIH amounting to about 3% per year for 3 years when adjusted for inflation, as well as an additional $2 billion per year for 5 years to create an “NIH Innovation Fund.” NIH funding was recently increased by $2 billion (6.7%) in December as part of the 2016 budget.

The article quotes Stephen Gardell, PhD, senior director of Scientific Resources at SBP, on the importance of NIH funding: “The NIH is making an investment in the work of researchers and looking for a return on that investment—discoveries that will provide the foundation for new therapies and new devices that will improve human health and combat disease.”

Gardell’s research focus involves the profiling of metabolites in blood, urine and tissues to discover novel biomarkers. Large-scale profiling of metabolites enabled by remarkable advances in mass spectrometry has created a new area of research called metabolomics. Hundreds of different metabolites (“biomarker candidates”) can now be measured in a single drop of blood. The metabolite profile provides a signature of health, disease and drug action that can help to recognize a disease early and guide the care provider to select the right drug.

Gardell also emphasized that SBP is well equipped to carry out the translation of discoveries from bench to bedside that the act is intended to promote. He described the SBP drug discovery program as “a very capable and powerful resource that is modeled after the infrastructure in the world-leading pharmaceutical companies.”

Institute News

10 years of studying metabolism, nutrition, and human energy—what have we REALLY learned?

Authorsgammon
Date

August 17, 2015

Every day we read or hear something about a food that is bad for us, a fruit that will help us lose weight, or a supplement that will extend our lives beyond their natural endpoint. Unquestionably, every year a significant amount of money, research, and time is spent exploring the cause and prevention of obesity, diabetes, heart disease, and the myriad of other metabolic conditions that affect our health and well-being. But what do scientists think are the truly important things we have learned about our metabolism, diet, and exercise over the last decade?  And how is this leading to the next-generation of medicines to treat metabolic disorders? Continue reading “10 years of studying metabolism, nutrition, and human energy—what have we REALLY learned?”