Ze'ev Ronai Archives - Sanford Burnham Prebys
Institute News

Ronai discusses new AI-supported breast cancer findings on Arabic-language TV

AuthorScott LaFee
Date

August 7, 2023

This month, researchers in Sweden published a study in The Lancet Oncology that compared the efficacy of artificial intelligence-supported mammogram screening versus the standard double reading by radiologists.

The researchers found in their randomized trial that AI-supported mammography screenings are safe, almost halved radiologists’ workload, and detected cancers that reviewing doctors missed.

Not surprisingly, the findings garnered international news coverage. Breast cancer is a global health threat, with more than 2.3 million women worldwide diagnosed each year and nearly 700,000 deaths.

Ze’ev Ronai, PhD, director of the Cancer Center at Sanford Burnham Prebys, was among experts interviewed by global media to provide context to the Swedish findings. He was interviewed on Alhurra, a U.S. government-owned Arabic-language satellite TV news channel that broadcasts internationally outside of the U.S.

You can watch the interview here. It’s in Arabic, but essentially Ronai said:

“This randomized trial of over 80,000 women offers an important advance for early detection of breast cancer, based on AI support of radiologist workload. AI will assist but not replace the role of radiologists in these assessments, and thus, is expected to enable radiologists to attend to more difficult cases. Caution from detections of less harmful lesions (which was one of the outcomes in this study), requires more training and careful validation. Overall, this is an important and safe advance in our quest for early detection of cancer, in this case, breast cancer.”

Institute News

Solar power gone awry

AuthorZe’ev Ronai, PhD
Date

July 29, 2019

Are you enjoying the summer? Out grilling, swimming and hiking? Beware: those sunny days may come with a cost. 

When the sun’s rays touch your skin, they don’t stop there. Ultraviolet (UV) light enters your cells, and photons—tiny particles of light—landing on the proteins and DNA in your cells. With just the right amount of activation energy, proteins change their shape and function, and your DNA becomes damaged, or as we say—mutated. Under normal circumstances, cells use special proteins to repair mutated DNA, but when the repair proteins are damaged, DNA mutations become permanent.

Certain DNA segments called genes are more vulnerable to mutations than others. The BRAF gene, which normally makes a protein that controls cell growth, is mutated in more than 50% of melanomas—the most dangerous type of skin cancer. Melanoma appears when BRAF mutations crop up with other mutations in the same skin cell. For patients with these tumors, drugs that target BRAF and related proteins are often successful at slowing or stopping melanoma growth—but only for a while.

Unfortunately, patients who initially respond to such targeted therapy often relapse. Some patients relapse because their tumors generate a new mutation, making it resistant to the drug.  Overall, it may be only a small fraction of cells within the original tumor that develop resistance. So although 99.5% of the cancer cells in a tumor may have a mutated BRAF gene, the other 0.5% can harbor different mutations that either evolved during therapy or were present in the first place, but didn’t drive the initial tumor. For these patients, the bulk of BRAF mutant cancer cells are killed with targeted therapy, but another melanoma can evolve from the remaining 0.5%. This is why combination therapy, where drugs aim for multiple targets, are important.

But targeting every single mutation in a tumor may not be feasible. There will always be a fraction of cells with a different mutation that evolves, making patients vulnerable to a relapse. This is where attacking the tumor from another angle comes into play.  

Checkpoint immunotherapies—which have revolutionized the treatment of melanoma—attack tumors independent of their mutational makeup. They work by loosening the brakes of the immune system—brakes that normally prevent immune cells from attacking our own self. Tumors are very good at hiding from the immune system, but with the brakes released, tumors become exposed and are successfully attacked by the immune system, irrespective of their mutational makeup. 

But not everyone responds to immunotherapy—and we don’t yet know why. Is it the tumor? Is it the patient’s immune system? There is even evidence that the gut microbiome plays a role. Once we understand why some patients respond and or stop responding to immunotherapy, we can improve selection of patients for therapy, the effectiveness of these treatments and the possible combinations that work best. 

So where is skin cancer therapy headed? A combination of checkpoint immunotherapy with targeted therapies, as well as some new tricks we are learning, such as coaching tumor cells to be better recognized by the immune system, are moving the needle.

In my lab at Sanford Burnham Prebys we are dissecting the cell signals that drive cancer. Our studies are guided by data derived from patients’ tumors, coupled with advanced bioinformatics. We seek to understand how physiological processes are modified as cancer develops and how they can be exploited for cancer therapy. For example, we recently demonstrated a connection between the composition of the gut microbiome and the response to immunotherapy, establishing new paradigms, but raising important new questions. Can we better predict who will respond to immunotherapy? Can we enhance the response to immunotherapy by manipulating the gut microbiome? Can we make tumors that don’t initially respond start responding to immunotherapy? The bar is always raised, as one discovery opens so many new avenues to explore and advance our understanding, aspects that members of my lab are working hard on to answer.  

Yes—we are making progress. But preventing the initial sun exposure by using protective gear and sunscreens is needed now as much as ever.

Ze’ev Ronai, PhD, professor in Sanford Burnham Prebys’ Tumor Initiation and Maintenance Program, is a world-renowned cancer research expert and recipient of the Lifetime Achievement Award from the Society of Melanoma Research. The award recognizes his major and impactful contributions to melanoma research over the course of his career.

Institute News

Super-oncogenic protein that promotes development of melanoma

AuthorJessica Moore
Date

May 19, 2016

An international collaborative study led by scientists at the Sanford Burnham Prebys Medical Discovery Institute (SBP) has identified a malicious form of a protein that drives the formation of melanoma. The findings, published in Cell Reports, reveal unexpected insight into how this lethal skin cancer develops and progresses, and may help understand and develop novel therapies against these aggressive tumors.

“We found that an inactive version of a protein called activating transcription factor 2 (ATF2) elicits a tumor-promoting effect in a way not seen before,” said Ze’ev Ronai, PhD, chief scientific advisor of SBP and professor of its NCI-designated Cancer Center. “We have known for years that the active version of ATF2 promotes melanoma, but this result was a surprise because we thought ATF2 transcriptional activity was essential to activate cancer-related genes.”

Ronai’s team has been studying ATF2’s role in melanoma for two decades. Their past work led to the view that it’s dangerous when it’s in the nucleus because it controls cancer-enabling genes, but benign when it’s not.

In the current study, researchers looked at the oncogenic potential of a ‘dead’ form of ATF2 in mice with mutations in BRAF, a kinase that transmits signals promoting cell division and is often mutated in pigmented skin cells. The same mutation is found in about half of all human melanomas.

“Inactive ATF2, in mice with mutant BRAF, resulted in the formation of pigmented lesions and later, melanoma tumors,” said Ronai, senior author of the study.

“What makes this discovery relevant to human melanoma is that we identified a structurally similar form of inactive ATF2 in human melanoma samples that has the same effects on cancer cells,” added Ronai. “Inactive ATF2 could be an indicator of tumor aggressiveness in patients with BRAF mutations, and maybe other types of cancer as well.”

“Unlike models with more complex genetic changes, like the inactivation of PTEN and p16 combined with BRAF mutations that result in rapid tumorigenesis (within a few weeks), the inactive ATF2 caused BRAF mutant mice to develop melanoma much slower, more similar to the timescale seen in patients,” commented Ronai. “This improves our ability to monitor the development of melanoma and efficacy of possible interventions.”

“We’re now investigating why inactive ATF2 so potently promotes BRAF-mutant melanoma, and looking for other types of cancer where it acts the same way,” Ronai said. “Our findings may guide precision therapies for tumors with mutant ATF2.”

The paper is available online here.

Institute News

A sugar found in seaweed may help treat skin cancer

Authorsgammon
Date

December 8, 2015

New research from scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) suggests that a rare sugar found in seaweed, mushrooms, seeds and other foods may be able to help treat skin cancer. The sugar, called L-fucose, has previously been linked to a number of pathological conditions including inflammation and certain cancers. The current study, published in Science Signaling, is the first to associate L-fucose with melanoma, the most dangerous form of skin cancer.

“Our findings offer new, unprecedented detail into the sugar’s role in cancer,” said Ze’ev Ronai, PhD, senior author and scientific director of SBP’s La Jolla campus. “We found that by tampering with L-fucose metabolism, we could inhibit melanoma tumor metastasis. Not only were the tumors affected but also their microenvironment—the cells surrounding the tumor that play a critical role in sustaining the cancer—making the discovery even more impactful.”

Sugars, such as glucose and sucrose, come from many different sources and are used by the body in unique ways. Some sugars, including L-fucose, provide crucial tags on cell-surface proteins that signal inflammation and help direct cell migration. Previous research has shown that changes in the amount of L-fucose on cells are associated with breast and stomach cancers.

The study started with a broader investigation of activating transcription factor 2 (ATF2), a protein that controls the expression of many other proteins and that has been implicated in the development of melanoma and other cancers. Ronai’s group has been studying ATF2 for more than 20 years.

“To our surprise, one of the genes found to be regulated by ATF2 was fucokinase (FUK), which controls the ability of cells to process the dietary sugar, L-fucose, into a form that is useable for the modification (fucosylation) of proteins, many of which are on the cell surface, said Ronai.”

“In human samples, we found reduced fucosylation in metastatic melanomas and a better prognosis for primary melanomas with increased fucosylation. We suspect that the absence of L-fucose on melanoma cells makes them less sticky and more mobile in the body, making them more likely to metastasize,” Ronai explained.

Importantly, in mice with melanoma, the researchers were able to increase fucosylation either by adding the sugar to their drinking water or by genetic manipulation. Both methods inhibited the growth and metastasis of the tumors.

“Many patients develop resistance to current melanoma drugs. If we can add something like L-fucose to enhance these therapies, that’s very exciting, and it’s something we’re actively looking into,” said lead author Eric Lau, PhD, who is extending studies on the role of L-fucose in melanoma at the H. Lee Moffitt Cancer Center in Tampa, Florida,

“The dietary result was especially gratifying, because it suggests that modifying fucosylation could be achieved by the simple addition of L-fucose to drinking water.

“Our results further suggest that the addition of dietary sugar may help fight melanoma by boosting numbers of helpful immune cells. We are continuing our exploration of how fucosylation and other sugar coatings affect the immune system and impact cancer,” added Ronai.

To read the paper click here

Institute News

Scientists identify promising new melanoma drug

Authorsgammon
Date

November 25, 2015

A new drug discovered by scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) may show promise for treating skin cancers that are resistant or unresponsive to today’s leading therapies.

In the United States, 5 million people are treated annually for skin cancer, and 9,000 people die from the deadliest form—melanoma—according to the US Department of Health and Human Services.

The new compound, named SBI-756, targets a specific molecular machine known as the translation initiation complex. These structures are in every cell and play the critical role of translating mRNA into proteins. In cancer cells the complex is impaired, producing extra protein and providing a growth advantage to tumors. SBI-756 causes the translation complex to dissociate, and was shown to inhibit melanoma cell growth in the study, published today in Cancer Research.

“The unique target of SBI-756 makes it especially promising for use in combination therapy,” said Ze’ev Ronai, senior author and scientific director of SBP’s La Jolla campus. “A major issue limiting the effectiveness of current melanoma therapies is that tumors become resistant to treatment. Combining drugs that come at a melanoma from different angles may help overcome the problem of drug resistance.”

About 50% of melanomas are caused by mutations in a specific gene called BRAF. Patients with these tumors are commonly prescribed vemurafenib, a BRAF inhibitor that shrinks tumors. However, many patients experience a relapse within weeks, months, or even years because tumors evolve and become resistant to the drug. A similar phenomenon is seen in mice, where treatment of BRAF melanomas results in an initial response, but 3-4 weeks later the tumors return.

The team found that if SBI-756 is co-administered with vemurafenib, the tumors disappeared and most importantly, they did not reoccur. Even in mice with advanced/late stage BRAF driven cancer, the reappearance of . These data suggests that SBI-756 provides a significant advantage in overcoming tumor resistance.

“The ability of this compound to delay or eliminate the formation of resistant melanomas is very exciting,” said Ronai.

In other forms of melanoma, caused by mutations in the genes NRAS and NF1—which are known as unresponsive to BRAF drugs—administering SBI-756 alone significantly the scientists found. The team is now testing whether combining SBI-756 with existing drugs used for treating these types of melanomas can make the tumors disappear.

Drugs that target the translation initiation complex have been intensely pursued in the past few years, not just for melanoma, but for a wide array of cancers. SBI-756 is considered a first-in-class drug because it is the first successful attempt to target a specific part of the complex called eIF4G1.

In fact, SBI-756 is the culmination of seven years of work in Ronai’s group—testing and tweaking the drug’s features to help it bind to the target more readily and to make it easier to formulate. The resulting compound is a significant improvement over the initial version.

“It appears that the dose we need to administer is very low. Even in the experiments where the drug was administered to mice with tumors over a significant period of time, we have not found any toxicity,” Ronai said.

“The finding of SBI-756 is also exciting for the possible treatment of diseases other than cancer, such as neurodegenerative diseases, where the activity of the translation initiation complex is reported to be higher,” said professor Nahum Sonenberg of McGill University, a world renowned leader in the field of protein translation.

“We hope that we’re going to come up with the next generation of the compound that can go into clinical trials—first in melanoma but likely in other tumors,” Ronai said.

The study was performed in collaboration with the Conrad Prebys Center for Chemical Genomics at SBP, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University (Canada), the National Cancer Institute, MD Anderson Cancer Center, and Yale University.

Institute News

Sanford-Burnham researchers identify a new target for treating drug-resistant melanoma

Authorsgammon
Date

May 28, 2015

A new collaborative study led by researchers at Sanford-Burnham, published today in Cell Reports, provides new insight into the molecular changes that lead to resistance to a commonly prescribed group of drugs called BRAF inhibitors. The findings suggest that targeting newly discovered pathways could be an effective approach to improving the clinical outcome of patients with BRAF inhibitor-resistant melanoma tumors. Continue reading “Sanford-Burnham researchers identify a new target for treating drug-resistant melanoma”

Institute News

Expanding the options to treat melanoma

Authorsgammon
Date

March 16, 2015

Melanoma is the most deadly form of skin cancer with approximately 10,000 deaths per year in the U.S. and more than 65,000 worldwide. Although there are more and better treatment options available today than in previous years, there is still an urgent need to develop drugs that target the numerous pathways melanoma cells use to multiply, spread, and kill. Continue reading “Expanding the options to treat melanoma”

Institute News

Study explains control of cell metabolism in patient response to breast cancer drugs

Authorsgammon
Date

March 9, 2015

A new research study has discovered a mechanism that explains why some breast cancer tumors respond to specific chemotherapies and others do not. The findings highlight the level of glutamine, an essential nutrient for cancer development, as a determinant of breast cancer response to select anticancer therapies, and identify a marker associated with glutamine uptake, for potential prognosis and stratification of breast cancer therapy. The study results were published online in Cancer Cell. Continue reading “Study explains control of cell metabolism in patient response to breast cancer drugs”