Genomic Instability Archives - Sanford Burnham Prebys

Dr. Xiao Tian participates in the Degenerative Diseases Program and the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys. He started his lab in 2024 to understand the fundamental biology of aging and its contribution to age-related diseases. He joined the Institute after his postdoctoral research in Dr. David Sinclair’s lab at Harvard Medical School where he co-wrote the Information Theory of Aging. He obtained his BS from Shandong University and his PhD from the University of Rochester where he worked with Dr. Vera Gorbunova.
 

Education

2018-2023: Postdoc, Harvard Medical School
2016-2018: Postdoc, University of Rochester
2010-2016: PhD, Biology of Aging, University of Rochester
2005-2009: BS, Microbial Technology, Shandong University
 

Honors and Awards

2020-2026: K99/R00 Pathway to Independence Awards, NIH/NIA
2019-2020: NASA Postdoctoral Fellowship, NASA Ames Research Center
2017: Outstanding Dissertation Award for the Natural Sciences, University of Rochester
2015: Messersmith Dissertation Fellowship, University of Rochester
2014: Award for Outstanding Self-Financed Students Abroad, China Scholarship Council
2010-2014: Holtfreter Fellowship, University of Rochester
2007: Weichai Power Scholarship, Shandong University
2006-2008: Excellent Student Scholarship, Shandong University

Select Publications

Showing 3 of 3

Reprogramming to recover youthful epigenetic information and restore vision.

Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, Vera DL, Zeng Q, Yu D, Bonkowski MS, Yang JH, Zhou S, Hoffmann EM, Karg MM, Schultz MB, Kane AE, Davidsohn N, Korobkina E, Chwalek K, Rajman LA, Church GM, Hochedlinger K, Gladyshev VN, Horvath S, Levine ME, Gregory-Ksander MS, Ksander BR, He Z, Sinclair DA

Nature 2020 Dec ;588(7836):124-129

Xueqin (Sherine) Sun seeks to better understand the genetic and epigenetic underpinnings of cancers, using genome editing technologies, animal and patient-derived models, and other tools to develop more effective cancer therapies.

“My lab is interested in studying how DNA or the machinery that interprets it leads to the transformation of normal cells into cancerous cells and concurrently, their specific vulnerabilities. Identifying these intrinsic vulnerabilities and targeting them properly is profoundly important to developing effective cancer therapies.”

Another aspect of Sun’s work is understanding how cancer cells and tumors change their circumstances and environment to improve survival, including hiding from or repressing the immune system.

“Changes to DNA itself and the way how DNA is interpreted by cells can transform normal cells into cancer cells. And transformed cells propagate by enhancing the misinterpreted DNA information, which in turn becomes the Achilles’ heel of cancer cells. Our goal is to find out how DNA information is misinterpreted in different ways and how to correct it to halt cancer.”

At Sanford Burnham Prebys, Sun and colleagues will employ a host of leading-edge tools and approaches, including functional genomics, artificial intelligence, structural biology, large-scale drug screening, and advanced imaging/spatial technologies.

Sun conducted her postdoctoral fellowship at Cold Spring Harbor Laboratory under the guidance of Alea Mills, PhD, a professor at the National Cancer Institute-designated cancer center at Cold Spring Harbor.

She received her PhD from Wuhan University in China.

Select Publications

Showing 3 of 3

Charles Spruck earned his BS in Biology at UCLA and PhD in Molecular Biology at the University of Southern California. He worked as a postdoctoral fellow at The Scripps Research Institute in La Jolla and was recruited to the Sidney Kimmel Cancer Center in San Diego as an Assistant Professor in 2003. He joined Sanford Burnham Prebys in 2010.

Education and Training

2003: Post-doc, The Scripps Research Institute
1986: PhD, University of Southern California
1995; BS, University of California at Los Angeles

Prestigious Funding Awards / Major Collaborative Grants

NIH/NCI DoD BCRP CBCRP TRDRP

Honors and Recognition

ACS Scholar

Select Publications

Showing 3 of 3

Lukas Chavez is an Associate Professor at the Sanford Burnham Prebys. He is also the Director of the Clayes Research Center for Neuro-Oncology at the Institute for Genomic Medicine at the Rady Children’s Hospital, San Diego. In this role, he works with a team of physicians and scientists to capture genomic, transcriptomic, epigenetic and functional data from pediatric brain tumor patients, and uses this information to improve diagnosis and treatment. His research interests focus on structural variants as well as circular extrachromosomal DNA (ecDNA) in childhood cancers. These extrachromosomal DNA circles are frequently found in highly aggressive solid tumors and represent a new target for improved therapeutic approaches.

Education

2010: PhD, Free University, Berlin

Honors and Recognition

2020: St. Baldrick’s Scholar Award, St. Baldrick’s Foundation
2019: Award of Excellence in Pediatric Neuro-Oncology, Society of Neuro-Oncology
2012–2015: Feodor-Lynen Fellowship for Postdoctoral Researchers, Alexander-von-Humboldt Foundation

Select Publications

Showing 3 of 3

3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma.

Okonechnikov K, Camgöz A, Chapman O, Wani S, Park DE, Hübner JM, Chakraborty A, Pagadala M, Bump R, Chandran S, Kraft K, Acuna-Hidalgo R, Reid D, Sikkink K, Mauermann M, Juarez EF, Jenseit A, Robinson JT, Pajtler KW, Milde T, Jäger N, Fiesel P, Morgan L, Sridhar S, Coufal NG, Levy M, Malicki D, Hobbs C, Kingsmore S, Nahas S, Snuderl M, Crawford J, Wechsler-Reya RJ, Davidson TB, Cotter J, Michaiel G, Fleischhack G, Mundlos S, Schmitt A, Carter H, Michealraj KA, Kumar SA, Taylor MD, Rich J, Buchholz F, Mesirov JP, Pfister SM, Ay F, Dixon JR, Kool M, Chavez L

Nat Commun 2023 Apr 21 ;14(1):2300

The landscape of genomic alterations across childhood cancers.

Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, Johann PD, Balasubramanian GP, Segura-Wang M, Brabetz S, Bender S, Hutter B, Sturm D, Pfaff E, Hübschmann D, Zipprich G, Heinold M, Eils J, Lawerenz C, Erkek S, Lambo S, Waszak S, Blattmann C, Borkhardt A, Kuhlen M, Eggert A, Fulda S, Gessler M, Wegert J, Kappler R, Baumhoer D, Burdach S, Kirschner-Schwabe R, Kontny U, Kulozik AE, Lohmann D, Hettmer S, Eckert C, Bielack S, Nathrath M, Niemeyer C, Richter GH, Schulte J, Siebert R, Westermann F, Molenaar JJ, Vassal G, Witt H, ICGC PedBrain-Seq Project, ICGC MMML-Seq Project, Burkhardt B, Kratz CP, Witt O, van Tilburg CM, Kramm CM, Fleischhack G, Dirksen U, Rutkowski S, Frühwald M, von Hoff K, Wolf S, Klingebiel T, Koscielniak E, Landgraf P, Koster J, Resnick AC, Zhang J, Liu Y, Zhou X, Waanders AJ, Zwijnenburg DA, Raman P, Brors B, Weber UD, Northcott PA, Pajtler KW, Kool M, Piro RM, Korbel JO, Schlesner M, Eils R, Jones DTW, Lichter P, Chavez L, Zapatka M, Pfister SM

Nature 2018 Mar 15 ;555(7696):321-327

Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling.

Mack SC, Pajtler KW, Chavez L, Okonechnikov K, Bertrand KC, Wang X, Erkek S, Federation A, Song A, Lee C, Wang X, McDonald L, Morrow JJ, Saiakhova A, Sin-Chan P, Wu Q, Michaelraj KA, Miller TE, Hubert CG, Ryzhova M, Garzia L, Donovan L, Dombrowski S, Factor DC, Luu B, Valentim CLL, Gimple RC, Morton A, Kim L, Prager BC, Lee JJY, Wu X, Zuccaro J, Thompson Y, Holgado BL, Reimand J, Ke SQ, Tropper A, Lai S, Vijayarajah S, Doan S, Mahadev V, Miñan AF, Gröbner SN, Lienhard M, Zapatka M, Huang Z, Aldape KD, Carcaboso AM, Houghton PJ, Keir ST, Milde T, Witt H, Li Y, Li CJ, Bian XW, Jones DTW, Scott I, Singh SK, Huang A, Dirks PB, Bouffet E, Bradner JE, Ramaswamy V, Jabado N, Rutka JT, Northcott PA, Lupien M, Lichter P, Korshunov A, Scacheri PC, Pfister SM, Kool M, Taylor MD, Rich JN

Nature 2018 Jan 4 ;553(7686):101-105