cardiomyocytes Archives - Sanford Burnham Prebys
Institute News

NIH grant aims to boost heart muscle

AuthorMonica May
Date

August 23, 2019

Heart disease is the number one killer of Americans. Now, the National Institutes of Health (NIH) has awarded a four-year grant totaling nearly half a million dollars to Sanford Burnham Prebys to find medicines that could help people repair damaged heart muscle—and potentially reduce the risk of heart attack or other cardiovascular events. 

“Each year we lose far too many loved ones to heart attacks and other heart conditions,” says grant recipient Chris Larson, PhD, adjunct associate professor in the Development, Aging and Regeneration Program at Sanford Burnham Prebys. “Now, we have the opportunity to find medicines that may help more people live long, active lives by strengthening their heart muscles.”

Nearly half of American adults—approximately 120 million people—have cardiovascular disease, according to the American Heart Association and NIH. The condition occurs when blood vessels that supply the heart with oxygen and nutrients become narrowed or blocked, increasing risk of a heart attack, chest pain (angina) or stroke. Current medications for cardiovascular disease can lower blood pressure or thin the blood to minimize risk. Still, five years after a heart attack, 47% of women and 36% of men will die, develop heart failure or experience a stroke. No medicines that repair heart muscle exist. 

To identify drugs that may stimulate heart muscle growth, Larson and his team will screen hundreds of thousands of compounds against human heart muscle cells, called cardiomyocytes. The work will be done in collaboration with Alexandre Colas, PhD, assistant professor in the Development, Aging and Regeneration Program at Sanford Burnham Prebys, who developed the high-throughput screening system that will be employed.

Once the scientists identify drug candidates that promote heart muscle growth, they will study these compounds in additional cellular and animal models of heart disease in the hopes of uncovering insights into the biology behind the repair process. 

“After experiencing a heart attack or other cardiovascular event, many people live in fear that it will happen again,” says Colas. “Today we embark on a journey toward a future where people living with cardiovascular disease don’t have to be afraid of a second heart attack.”

Institute News

Simulation matters at Lake Nona Research Day, from cells to big data

AuthorCommunications
Date

October 14, 2016

Scientists, physicians and trainees recently gathered at the first Lake Nona Research Day to share the latest research and technologies that are contributing to innovations in health care.. The event brought together senior and junior practitioners from Medical City’s five institutions.

“As we planned the symposium, we decided to focus on the trainees, who then became the glue that brought everything together,” said Philip Wood, D.V.M., PhD, director of academic affairs at Sanford Burnham Prebys Medical Discovery Institute (SBP) at Lake Nona and chair of the Medical City Research Council. “Their enthusiasm to share their science is evident in the 120 research posters that highlight the research emerging from SBP, the University of Central Florida, the University of Florida, Nemours Children’s Hospital, and the Orlando VA Medical Center.” The symposium was presented by the Lake Nona Institute.

Disease modeling by high-tech simulation and data mining were themes of featured talks. Lawrence Lesko, PhD, professor, Center for Pharmacometrics at UF, described using biosimulation to project drug performance in virtual patients. “What we do is like a flight simulator—we evaluate drug impact before testing in patients, frequently focusing on drug-drug interactions,” said Lesko.   

Similarly, Daniel Kelly, MD, scientific director of SBP at Lake Nona, spoke about his lab’s work to study the changes in mitochondria function that are seen in heart failure patients and to simulate disease in a dish using human induced pluripotent stem cell-derived cardiomyocytes.  “We need to become mitochondrial doctors to treat heart failure,” said Kelly. “These models will help us discover therapeutic approaches tailored to the etiology of a subset of heart failure cases that could be given earlier than current treatments.”

Steven Kern, PhD, deputy director, Quantitative Sciences at the Bill and Melinda Gates Foundation, delivered the keynote on using data to decide how to invest $1 billion in precision public health projects on a global scale. “We build drug-disease models to determine how to prevent epidemics like malaria. In our Healthy Birth and Growth Project, we model real-world data to determine the right interventions, in the right dosage, to get the right response—to get children to the healthiest stage at 100 days of life,” explained Kern. 

David Odahowski, president and CEO of the Edyth Bush Charitable Foundation, which sponsored the symposium, concluded the program by observing that innovation often comes from the intersection of disciplines. “I think what we learned today is that collaboration is the true measure of success and that is especially true here in Medical City.”

Institute News

Hearts build new muscle with this simple protein patch

Authorsgammon
Date

September 15, 2015

An international team of researchers has identified a protein that helps heart muscle cells regenerate after a heart attack. Researchers also showed that a patch loaded with the protein and placed inside the heart improved cardiac function and survival rates after a heart attack in mice and pigs. Continue reading “Hearts build new muscle with this simple protein patch”