Carl Ware Archives - Sanford Burnham Prebys
Institute News

Protein superfamily crucial to the immune system experiences Broadway-style revival

AuthorGreg Calhoun
Date

November 19, 2024

More than 25 years after targeting a member of this superfamily of proteins led to groundbreaking treatments for several autoimmune diseases including rheumatoid arthritis and Crohn’s disease, San Diego scientists note a resurgence of interest in research to find related new drug candidates.

In 1998, the same year “Footloose” debuted on Broadway, REMICADE® (infliximab) was approved by the FDA for the treatment of Crohn’s disease. This was the first monoclonal antibody ever used to treat a chronic condition, and it upended the treatment of Crohn’s disease.

Research published in February 2024 demonstrated better outcomes for patients receiving infliximab or similar drugs right after diagnosis rather than in a “step up” fashion after trying other more conservative treatments such as steroids.

Infliximab and ENBREL® (etanercept) — also approved in 1998 to treat rheumatoid arthritis — were the first FDA-approved tumor necrosis factor-α (TNF) inhibitors. TNF is part of a large family of signaling proteins known to play a key role in developing and coordinating the immune system.

The early success of infliximab and etanercept generated excitement among researchers and within the pharmaceutical industry at the possibility of targeting other members of this protein family. They were interested in finding new protein-based (biologics) drugs to alter inflammation that underlies the destructive processes in autoimmune diseases.

As “Footloose” made it back to Broadway in 2024 for the first time since its initial run, therapies targeting the TNF family are in the midst of their own revival. Carl Ware, PhD, a professor in the Immunity and Pathogenesis Program at Sanford Burnham Prebys, and collaborators at the La Jolla Institute for Immunology and biotechnology company Inhibrx, report in Nature Reviews Drug Discovery that there is a resurgence of interest and investment in these potential treatments.

“Many of these signaling proteins or their associated receptors are now under clinical investigation,” said Ware. “This includes testing the ability to target them to treat autoimmune and inflammatory diseases, as well as cancer.”

Today, there are seven FDA-approved biologics that target TNF family members to treat autoimmune and inflammatory diseases. There also are three biologics and two chimeric antigen receptor (CAR)-T cell-based therapies targeting TNF members for the treatment of cancer. This number is poised to grow as Ware and his colleagues report on the progress of research and many clinical trials to test new drugs in this field and repurpose currently approved drugs for additional diseases.

“The anticipation levels are high as we await the results of the clinical trials of these first-, second- and — in some cases — third-generation biologics,” said Ware.

Ware and his coauthors also weighed in on the challenges that exist as scientists and drug companies develop therapies targeting the TNF family of proteins, as well as opportunities presented by improvements in technology, computational analysis and clinical trial design.

Portrait of Carl Ware

Carl Ware, PhD, is a professor in the Immunity and Pathogenesis Program at Sanford Burnham Prebys.

“There are still many hurdles to get over before we truly realize the potential of these drugs,” noted Ware. “This includes the creation of more complex biologics that can engage several different proteins simultaneously, and the identification of patient subpopulations whose disease is more likely to depend on the respective proteins being targeted.

“It will be important for researchers to use computational analysis of genetics, biomarkers and phenotypic traits, as well as animal models that mimic these variables. This approach will likely lead to a better understanding of disease mechanisms for different subtypes of autoimmune conditions, inflammatory diseases, and cancer, enabling us to design better clinical trials where teams can identify the appropriate patients for each drug.”

Institute News

How our immune system controls gut microbes

AuthorMiles Martin
Date

April 6, 2022

And how this relationship could help fight autoimmune diseases

Sanford Burnham Prebys researchers including Carl Ware, PhD, and John Šedý, PhD have discovered an immunological process in the gut that could help improve treatment for autoimmune and gastrointestinal diseases. The study, published March 22 in Cell Reports, found that this process regulates the activation of white blood cells in the intestines, which ultimately helps the body control the composition of the gut microbiome. 

“The immune system is like a gardener for our gut bacteria, gently monitoring and responding to their populations and keeping an eye out for unwanted pathogens” says Ware, who directs the Infectious and Inflammatory Diseases Center at Sanford Burnham Prebys. “This ultimately helps the immune system control these microbes.”

This “gardening” relies on a molecule called BTLA, one of several checkpoint proteins used by the body to control the immune system. 

“This is a signaling system we’ve known about for decades, but this is a totally new function for it that we’ve never seen before,” says Šedý, a Sanford Burnham Prebys research assistant professor, who co-led the study with Ware. “I helped discover this system two decades ago, so it’s exciting that we’re still making new discoveries about its function.”  

To explore the role of BTLA in the gut, the team zeroed in on specialized lymph nodes in the intestines called Peyer’s patches, which are full of white blood cells that help monitor and respond to pathogens and other microbes in the gut.

“Gut bacteria are in constant competition, and the populations of specific species can fluctuate,” says Ware. “In a healthy microbiome, there’s a balance, and disrupting that balance can contribute to autoimmune diseases, gastrointestinal disorders and even some brain disorders.”

The team found that BTLA is critical for maintaining this balance because it triggers white blood cells to release antibodies that control the populations of different gut bacteria.

“It’s a finely calibrated system that we’re still only just beginning to understand in detail,” adds Ware.

Immune checkpoints like BTLA are already used in immunotherapy for some cancers, and these results make the researchers confident that this system can be leveraged to treat diseases in the gut, especially those that are also autoimmune disorders, such as Crohn’s disease or ulcerative colitis. 

“The immune system is unimaginably complex, and understanding it gives us the ability to manipulate it, and that can help us treat diseases,” says Šedý. “This discovery is a step forward in that larger narrative.” 

Institute News

New COVID-19 drug passes phase 2 clinical trial

AuthorMiles Martin
Date

January 20, 2022

The new treatment, developed by Avalo Therapeutics with Sanford Burnham Prebys researchers, can mitigate lung damage and improve survival in COVID patients.

In a phase 2 clinical trial conducted by Avalo and supported by Sanford Burnham Prebys, a significantly higher proportion of hospitalized patients with COVID-19 remained alive and free of respiratory failure for 28 days after receiving treatment with the new antibody, called CERC-002. Unlike other experimental COVID therapies, CERC-002 does not target the virus itself, instead targeting the immune response associated with the virus to stop the disease from progressing before it becomes fatal.

“At the beginning of the pandemic we thought vaccines were going to be all we really needed. But with variants like omicron, we’re going to have more people that progress to serious illness even with the vaccine,” says study coauthor Carl F. Ware, PhD, director of the Infectious and Inflammatory Diseases Center at Sanford Burnham Prebys. “We need treatments to stop the progression to severe disease and death.”

The findings were published December 6 in the Journal of Clinical Investigation.

COVID-19: a continuing crisis
In the United States, over 840,000 people have died from COVID-19. A large proportion of these deaths have been among the elderly or those who are immunocompromised due to a preexisting condition. And while three quarters of the population has received at least one dose of the COVID-19 vaccine, many remain unvaccinated.

“A lot of us feel safer now that we’ve gotten our shots,” Ware says, “but the threat of the pandemic has not gone away, even for vaccinated people.”

Most people with COVID-19 experience few to no symptoms. However, elderly individuals, people with a concurrent health condition or those who are immunocompromised are susceptible to a condition called cytokine storm, in which their own immune molecules called cytokines flood the body in higher concentrations than usual.

Rather than helping fight the virus, these extra immune molecules wreak havoc, causing patients to develop the deadly respiratory failure characteristic of severe COVID disease.

“The COVID virus gets the immune system amped up by producing these molecules, which is normally how the immune system fights diseases,” says Ware. “But when there are too many cytokines and they’re not doing their job, it can lead to severe damage.” 

Neutralizing the cytokine storm
The new treatment, CERC-002, is a cytokine neutralizer—an immune molecule that recognizes and deactivates a cytokine known as LIGHT, which is elevated in patients with COVID-19. Cytokine neutralization drugs are currently being tested in the clinic, but they are mainly effective in severely ill patients who are already on a ventilator or other organ support.

“There is a critical need for drugs to stop milder cases from progressing to severe,” says Ware. “This treatment targets the cytokine immune response early enough to stop it in its tracks, which no other treatment does right now.”

83 COVID patients were enrolled in the study, half receiving the treatment, and half receiving a placebo. All patients were hospitalized with mild-to-moderate respiratory distress and were also receiving standard-of-care therapy during the trial.

They found that 83.9% of patients who received a dose of CERC-002 on top of standard of care remained alive and free from respiratory distress for 28 days. For patients receiving placebo, the number was only 64.5%.

Looking ahead
As a phase 2 clinical trial, the purpose of this study was to test whether the compound has therapeutic potential in a small number of patients. Now that the drug has proven successful at a small scale, it can be tested on a larger number of patients to ensure its benefits are consistent across the population.

Additionally, because CEC-002 targets the immune response in COVID cases rather than the virus itself, the compound may have applications that extend beyond COVID.

“Cytokine storm is not unique to COVID. It occurs in other infections—even in autoimmune diseases with no active infection, so this treatment may have some utility in these other diseases as well.” 
While there is more work to be done before CERC-002 becomes widely available, it does offer a glimmer of hope during a pandemic that seems never-ending.

“We have made a lot of progress in controlling the pandemic with vaccines and other new therapies, but it’s not over yet,” says Ware. “Treatments like this may bring physicians an option to protect infected people from severe illness.

Institute News

COVID-19 vaccines: Our experts weigh in on the historic news

AuthorMonica May
Date

November 13, 2020

There are now two experimental vaccines for COVID-19 that are more than 90% effective—a remarkable development that has made the world collectively exhale. We caught up with our leading COVID-19 researchers to get their take on the update—including whether we are “out of the woods” and where they were when they heard the news.

Sumit Chanda, PhD, virologist
I was at work, obsessively refreshing my browser to follow the election results when the first press release about the Pfizer vaccine popped up. When I heard 90% efficacy, I was super excited. I had sort of a sigh of relief. Then I read the fine print, and I started to have more guarded optimism. I’m not popping the champagne yet. But I’m putting it on ice.

The 90% measurement was taken starting only one week after the second booster shot. That’s not a lot of time, and with a pretty small number of people. What I am really looking for is how many people are protected two months and six months after the booster shot. That’s when I’m going to get really excited. We know that 90% is the ceiling, now we need to know where the floor is. Even if efficacy drops from 90 to 70%, that is still really great.

This is also why we will likely need multiple vaccines, and with different mechanisms of protection. This vaccine also has to be kept at -70 degrees Celsius, which presents a logistical challenge to say the least. Most doctor’s offices don’t have this type of specialized equipment, not to mention rural areas or less developed countries.

Today’s news that the Moderna vaccine is at least as effective as Pfizer’s is equally great news. However, we are still going to need antivirals. Between people who may not respond to these vaccines, can’t get the vaccines, or simply don’t want to take them, there is still going to be a lot of people who catch COVID-19. Luckily there are some antiviral options that are looking really good, including an antibody from Lilly that just got Emergency Use Authorization from the FDA.

With all this said, this is unequivocally good news. I am optimistic that we will have several vaccines that are usable in the next couple months. But for now, we need to mask up and keep social distancing.

Step inside Sumit Chanda’s lab where he and his colleagues are racing to find a potential treatment for COVID-19.

Carl Ware, PhD, immunologist and clinical trial participant

I first heard the news about the Pfizer vaccine on the radio when I was listening to KPBS’ surf report (Scott Bass is a poet). As an immunologist studying coronaviruses and a volunteer in the Moderna vaccine trial, I’m following all of the results closely. I immediately turned the volume up.

NBC San Diego spoke with Dr. Carl Ware about his experience participating in a clinical trial testing Moderna’s vaccine for COVID-19.

The news is very encouraging, and certainly shines a brighter light at the end of the proverbial tunnel. 90% effectiveness is very impressive. My excitement is mostly based upon earlier trial results showing that the vaccines are safe and effective in stimulating the immune system. However, those trials only involved several hundred people in comparison to the tens of thousands of volunteers in the latest results, so these developments are very encouraging. It gives us a much better understanding of how the vaccine may work in the general population. 

However, questions will need to be answered about the efficacy in people over the age of 65 and other susceptible populations, the longevity of immunity, and long-term safety. Fortunately, these results will be scrutinized by scientists that are the best in the world. I have full confidence in their analysis.  

The effort to make a vaccine so quickly is truly an outstanding accomplishment. It’s not a race to be first, but first to stop the virus. This war against an unseen enemy will require multiple strategies to truly end this pandemic. Right now I am keeping an eye out for data that shows the long-term protection of these vaccines, and looking forward to results from my colleague Sumit Chanda, who has been racing to find existing drugs that could treat people who do become sick with COVID-19.

Laura Martin-Sancho, PhD, virologist

I learned about the Pfizer-BioNTech vaccine news last Monday morning. I had just woken up and was enjoying a cup of coffee when I read the press release. Here, they reported the results to date of their vaccine clinical trial showing 90% protection from COVID-19 infection. I felt very happy and very hopeful. Being from Spain, one of the countries that has been most affected by COVID-19, and having all my family over there, I felt this was the news we all have been waiting for a long time.

While this 90% might not hold by the end of the trial as more cases are reported, it still brings a lot of hope. Especially since many vaccines currently under clinical trials, including Moderna’s, use a similar approach. So we have even more reasons to be optimistic.

Future challenges for these vaccines will be to determine if they can prevent transmission from asymptomatic people with COVID-19. As clinical trial participants were not tested for COVID-19 throughout the study, and only symptomatic cases were reported, the question remains as to whether vaccinated people can still transmit the disease.

We also still don’t know how long the protection elicited by the vaccine lasts, which will determine whether and how frequently we will need a vaccine boost. In addition, more data are needed to evaluate if these vaccines can protect against severe COVID-19 or whether different age groups or ethnicities are protected. Only time will tell.

Meet the scientists on the front lines with coronavirus, including Dr. Martin-Sancho.

Institute News

COVID-19: Renowned scientist enters clinical trial

AuthorSusan Gammon
Date

September 17, 2020

Meet Carl Ware, PhD, director of the Infectious and Inflammatory Disease Center at Sanford Burnham Prebys. After a career of studying how viruses wreak havoc on our health, he now becomes a “subject” in a COVID-19 clinical trial. 

What inspired you to enroll in a COVID-19 clinical trial?
I’m an immunologist working on coronaviruses. I understand the science of vaccines and the protection provided against infections. I also know how important clinical trials are to developing safe and effective vaccines. I trust the science, so I stepped up to volunteer for the vaccine trial. Who better than an immunologist to be part of this grand experiment? 

Are you nervous? 
Excited is more accurate.

Do you know which vaccine you’re getting?
Yes, the RNA-based vaccine by Moderna. It’s not a live virus! The vaccine uses a small part of the virus that allows the virus to attach to lung cells. To cause disease, a virus must replicate inside a cell. The infected cell dies, releasing large numbers of new viruses. The progeny virus infects more lung cells, producing more virus that reaches levels that are easily spread to other people. The vaccine stimulates the immune system to block the virus from entering and replicating in the lung cells, stopping the infection and spread to other persons.

How many people are in the trial?
About 30,000 people will participate. The volunteers are placed into two groups receiving either the vaccine or a placebo. The study is “blinded,” so I don’t know which group I’m in, but I’m hoping it’s not the placebo group. The preliminary tests of this new vaccine indicate it is safe and stimulates the immune system. However, proof of safety and effectiveness requires a large number of volunteers. More volunteers are needed to complete the goal of 30,000. 

How will you be evaluated during the trial? 
Following the first injection, I will report my symptoms every night for a week using a simple, very cool app on my cell phone. A month later, I will receive a booster and follow the same procedure with the phone app. I have two more visits to the site at six months and a year to determine if the vaccine stimulated long-lasting immunity.

How will it be determined if the vaccine works?
All sorts of tests will be used to measure the response of my immune system. No worries, volunteers in the trial will not be infected with the virus!

The trial is open to anyone who wants to participate, especially those persons most vulnerable, with serious diseases; front-line and essential workers; those over 65, Black and Latinx persons, and people with other health risks. There are several test centers around the San Diego area. More information on volunteering is at eStudySite.
 

Institute News

An evening with autoimmune disorder experts

AuthorMonica May
Date

June 26, 2019

On June 20, 2019, nearly 100 community members, including many people living with autoimmune disorders and their loved ones, joined us at our latest SBP Insights event. The discussion featured unique perspective from three experts—a scientist, a doctor and a patient—on a single topic: autoimmune disorders. 

More than 50 million Americans have an autoimmune disorder, such as Crohn’s disease, psoriasis or rheumatoid arthritis. These conditions are often painful, chronic and debilitating. For unknown reasons, more than 80 percent of these patients are women. 

Scientists know these disorders occur when the immune system mistakenly attacks healthy tissue. But researchers still don’t understand why immunosuppressive treatments don’t work for everyone or know the initial trigger that causes the immune system to misfire. Answers to these fundamental questions could unlock insights that lead to new, effective medicines. 

“Before I was diagnosed, I thought doctors had it all sorted out. Now I know there is so much they don’t know,” says 17-year-old Madison Koslowski, who was diagnosed last year with juvenile idiopathic arthritis. She uses a wheelchair and cane for mobility while she works with her doctor to find a treatment that relieves her intense joint pain. “Right now, my friends are planning their future and figuring out where they will go to college. But for me, there are so many unknowns. I don’t know if I’m going to respond to the next medicine we try or if I will be really sick. I feel like my life is on pause. I have no idea when it will start again.”

Madison traveled from Los Angeles with her mother and a friend to hear race-car driver Angela Durazo speak about her journey with rheumatoid arthritis and learn what’s on the horizon for autoimmune treatments (read Angela’s story).

Following Angela’s presentation, Carl Ware, PhD, professor and director of the Infectious and Inflammatory Diseases Center at Sanford Burnham Prebys, took the stage and provided an overview of the science behind autoimmune disease. Ware also described his ongoing research collaboration with Eli Lilly, which recently led to a new Phase 1 clinical trial for autoimmune disorders. 

Hal Hoffman, MD, chief, division of allergy, immunology and rheumatology at UCSD and Rady Children’s Hospital, wrapped up the discussion with an overview of how he and his team are turning to rare immune disorders to understand the conditions as a whole. A Q&A followed the brief presentations. 

17-year-old Madison Koslowski (right), who was diagnosed last year with juvenile idiopathic arthritis, poses with race-car driver Angela.

17-year-old Madison Koslowski (right), who was diagnosed last year with juvenile idiopathic arthritis, poses with race-car driver Angela.

The discussion was moderated by Zaher Nahle, PhD, CEO of the Arthritis National Research Foundation.

Join us at our next SBP Insights discussion, which focuses on pancreatic cancer and takes place on November 21, 2019. Event details.

Institute News

Cancer immunology symposium highlights hot area in cancer research

AuthorSusan Gammon
Date

March 19, 2018

The Cancer Immunology and Tumor Microenvironment Symposium held at Sanford Burnham Prebys Medical Discovery Institute (SPB) on March 8, 2018 attracted a full house of international attendees.

Its success likely stems from the impressive roster of speakers invited by Carl Ware, PhD, director of the Infectious and Inflammatory Diseases Center and Linda Bradley, PhD, also a professor in that program. The presenters included many thought leaders in the field from such prestigious institutions as University of Pittsburgh, University of Ontario Fred Hutchinson Cancer Research Center, the Mayo Clinic, Moores Cancer Center at UC San Diego and University of Washington School of Medicine.

Today, immunotherapy is one of the most exciting areas of new discoveries and treatments for many types of cancer. Although huge strides have been made—some patients experience complete remission—more breakthroughs are needed. Some patients do not respond at all, some relapse and others experience undesirable, often life-threatening side effects. And some cancers, such a pancreatic, brain, breast and prostate, have shown very limited benefit.

“This symposium brings experts in the fields of cancer and immunology together to promote scientific exchange and collaboration,” says Ware. “It’s meetings like this that will help us accelerate the understanding and development of new immune system-based therapies for cancer patients.”

Institute News

Viral tricks inspire autoimmune drug design

AuthorSusan Gammon
Date

November 20, 2017

In the U.S. alone, 24 million people, or eight percent of the population, have autoimmune diseases such as rheumatoid arthritis, lupus, multiple sclerosis, and psoriasis. Current treatments, including the new wave of biologic therapies, don’t work for all patients so effective new drugs are still desperately needed. Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP), publishing in the Journal of Biological Chemistry, may have found a way to make one by studying viral infections.

“Viruses find ways of turning off immune responses so they can avoid being recognized and attacked,” explains John Šedý, PhD, research assistant professor at SBP and lead author of the study. “We looked at the proteins that herpes viruses use to turn down the immune system to figure out how to make a new drug to treat autoimmune disorders.”

Šedý and his team focused on a human protein called HVEM (herpesvirus entry mediator). HVEM dampens immune responses by activating a receptor called BTLA (B and T lymphocyte attenuator).

“In healthy individuals, BTLA is an immune checkpoint—a brake that keeps the immune system from spiraling out of control and causing autoimmune disease,” says Šedý. “We are working toward a prototype drug that activates BTLA to keep the immune system from attacking healthy cells.”

“There is a substantial need for new therapies that can utilize the natural “brakes” of the immune system to turndown the immune system when it gets out of control, explains Carl Ware, PhD, professor and director of the Infectious and Inflammatory Diseases Center at SBP and the senior author of the research. “It has been difficult to design a molecule that turns a checkpoint receptor on, so we’ve sidestepped that hurdle by taking inspiration from biology.”

“HVEM itself won’t work very well as a BTLA-activating drug because it has other important immune regulatory responsibilities, so the side effects could be serious. Looking closely at the structure of a mimic—an HVEM-like protein in a virus—allowed us a way to make it selectively bind to BTLA,” explains Ware.

“Our study provides preliminary evidence that we can modify HVEM in a way that may be a starting point for an autoimmune disease drug,” adds Ware. “This version of HVEM inhibits a signaling process in B cells that has been shown to be essential for driving autoimmunity.”

“Right now we are continuing with our structural analysis of HVEM to design versions that will advance our preclinical studies,” says Ware. “Our goal is to develop an entirely new class of therapies for autoimmune diseases like inflammatory bowel disease and systemic lupus, and other conditions caused by too much inflammation,” says Ware.

Congratulations to Drs. Ware and Sedy! This paper has been viewed more that 250 times on the JBC website.

Institute News

SBP President’s Lecture highlights new approach to cancer immunotherapy

AuthorLindsay Ward-Kavanagh
Date

February 27, 2017

One of the most promising new approaches to treating cancer is immunotherapy—redirecting the immune system to detect and destroy tumor cells. That’s the topic of this year’s President’s Lecture by Andrew Weinberg, PhD, chief of the Laboratory of Basic Immunology at Providence Portland Medical Center, on 28 February 2017.

His research is related to the work of scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) working to harness the power of killer T cells that can recognize and eliminate cancerous cells.

The laboratory of Linda Bradley, PhD, professor at SBP, recently published a paper identifying PSGL-1, a protein that limits T cell responses to viruses, as a new target for checkpoint inhibition, an approach akin to taking the “brakes” off the immune system. They showed that T cells in mice that could not make PSGL-1 delayed tumor growth, suggesting that blocking PSGL-1’s function would help T cells fight tumors.  

Conversely, Carl Ware, PhD, professor and director of the Infectious and Inflammatory Diseases Center, is developing an immunotherapy strategy that’s the equivalent of “hitting the gas” to expand anti-tumor responses. Their project exploits the protein LIGHT, which turns on multiple pathways required for strong T cell responses. Ware’s current goal is to create an optimized mutant form of LIGHT with the strongest ability to drive anti-tumor immunity.

Weinberg uses a similar “hitting the gas” approach to immunotherapy, targeting the T cell co-stimulator OX40 with a drug now in clinical trials.

“Immunotherapy drugs currently approved to treat cancer block the negative signals that minimize T cell activity,” explains Ware. “Weinberg’s  work is different because the drug, called an OX40 agonist, boosts positive signals to T cells. His work has really led to this new approach of targeting immune molecules to enhance T cell function.”

Weinberg’s pioneering research revealed how OX40 identifies functional T cells in cancer and autoimmune disease patients. He confirmed the anti-tumor potential of OX40 in mice when antibodies that stimulated OX40 activity expanded the T cell population within tumors, and drove tumor regression. The identification of this anti-tumor potential ultimately led to the creation of the company AgonOx, which has commercially developed OX40 agonists in collaboration with AstraZeneca.

As clinical trials with OX40 agonists continue, Weinberg still recognizes the value of basic research. He says, “Understanding immunology in its most basic form can help us understand the principles and mechanisms involved with how these drugs work. If we understand how they work we can make them better, or choose combinations that will improve their efficacy.”