Sanford Children's Health Research Center Archives - Sanford Burnham Prebys
Institute News

At a symposium on rare diseases, smiles were in abundance

AuthorScott LaFee
Date

March 28, 2024

Since 2010, we have organized an annual scientific and family conference at Sanford Burnham Prebys that covers multiple rare diseases.

In alternate years, this meeting has focused on Congenital Disorders of Glycosylation (CDG).

Our 2024 meeting this month was a cause for celebration. Partnering with the family support and information group, CDG CARE, the Sanford Children’s Health Research Center and sponsors invited scientists, families and physicians to share their stories – some technical, some heart-breaking, some updates of ongoing therapies and some describing new developments.

Five years ago, there were no therapies; now seven are moving into patients. Celebration indeed.

Our keynote speaker, Joni Rutter, PhD, director of the National Center for Advancing Translational Sciences, part of the National Institutes of Health, commented on our event:  “Meetings that engage clinicians, scientists, advocates and families equally should be the standard. (Our) approach is a model of collaboration and impact.”

In this CDG CARE video of this month’s gathering, you can see the joy, optimism and hope that inspires and helps carry us all. Thanks to everyone for their support. It makes those smiles real.

Institute News

Sharing science and stories at Rare Disease Day Symposium

AuthorGreg Calhoun
Date

March 7, 2024

The Sanford Burnham Prebys Rare Disease Day Symposium brought patients, families, physicians, scientists, industry experts and advocates together with a focus on congenital disorders of glycosylation.

Sanford Burnham Prebys, in partnership with CDG CARE and the Sanford Children’s Health Research Center, hosted a Rare Disease Day Symposium in San Diego from March 1-3, 2024. The goal of the event was to share the latest scientific developments from researchers studying congenital disorders of glycosylation (CDG), and to foster new perspectives, ideas and collaborations to accelerate the creation and implementation of better therapies and treatment plans for those living with CDG.

CDG is an umbrella term for more than 190 disorders caused by mutations that impair glycosylation; the complex process by which cells build long sugar chains that attach to proteins called glycoproteins. CDG affects fewer than 2,000 children worldwide. When glycosylation is impaired, the sugar molecules on many of the body’s proteins are absent or incomplete, leading to serious, often fatal, malfunctions in various organ systems throughout the body.

Since 2010, Hudson Freeze, PhD, the William W. Ruch Distinguished Endowed Chair, professor and director of the Human Genetics Program, and director of the Sanford Children’s Health Research Center at Sanford Burnham Prebys, has organized an annual Rare Disease Symposium, where scientists, doctors and families gather from around the world to discuss the latest research and meet other families coping with rare diseases.

“At Sanford Burnham Prebys, we’re committed to rare disease research,” says David Brenner, MD, president, CEO and Donald Bren Chief Executive Chair at Sanford Burnham Prebys, during his welcoming remarks. “We believe we can make a unique contribution to society with this work, and in so doing make the world a better place.”

Rare Disease Day Welcome speakers, Malin Burnham, Hudson Freeze, David Brenner

Brenner noted that Rare Research Day marked a time for academic medical centers across the US to celebrate the synergy between patients, families, physicians and scientists that is needed to advance research on all rare diseases, including CDG.

This was reflected throughout the symposium’s schedule and in the tenor of individual presentations. Patients and families were invited to give talks throughout the weekend to discuss the perspective of living with CDG or caring for a family member with CDG. The physicians and scientists who spoke consistently credited the patients and families for all they do to help raise funds and participate in research, including clinical trials that can add more appointments to already challenging calendars and routines.

The family reception on Friday, March 1, concluded the first day of the symposium with a more informal opportunity for patients, families, doctors and researchers to connect and socialize.

“This is the largest meeting we’ve ever had,” notes Freeze. “This gathering is an important part of nurturing the CDG research ecosystem by bringing experts together while also knitting us closer together with the people who really matter – the families.”

The symposium’s many sessions over three days included:

  • Friday, March 1
    • Scientific meeting
      • Introduction and welcome from Sanford Burnham Prebys president and CEO, David Brenner; Malin Burnham and Debra Turner, philanthropists and honorary trustees; and Congressional Representative Scott Peters from California’s 52nd Congressional District
      • Discussion of perspectives, challenges and triumphs led by parents, patients and advocates
      • Sessions on new therapies in development, the potential use of biotin as a treatment for many CDG patients, neurological disease, and gene therapy approaches, among others 
    • Poster session
    • Family reception
  • Saturday, March 2
    • Scientific meeting
      • Keynote address on “Accelerating Treatment and Cures for Rare Diseases” from Joni Rutter, PhD, director of the National Center for Advancing Translational Sciences in the National Institutes of Health
      • Additional conversation about the experiences of parents and advocates
      • Sessions on clinical trial updates; especially strong were drug repurposing efforts leading to new and unexpected potential treatments
    • Doctor-is-in-session
      • Brought together medical researchers, clinicians, advocates, patients and their families for an afternoon of hands-on collaboration in small groups
      • Prior “Doctor-is-in-session” events have led to profound experiences and unlikely partnerships
    • Evening reception
  • Sunday, March 3
    • CDG CARE Scientific and Family Conference
      • CDG clinical care and management sessions included neurophysiology and epilepsy, growth charts and hormonal abnormalities, puberty and bone health
      • CDG research sessions included genetics 101, CDG updates, organoids as disease models and clinical trials as a partnership between physicians and patients, among others
      • CDG resource exchange sessions included educational planning and advocacy, speech and technology, therapy interventions, special needs planning and behavioral health and family planning
Institute News

Hudson Freeze appointed to Distinguished Endowed Chair, thanks to gift from grateful supporter

AuthorSusan Gammon
Date

January 3, 2024

An endowed chair is among the highest forms of recognition for a faculty member’s research, teaching and service.

Thanks to a generous gift from Dinah C. Ruch, Professor Hudson Freeze, PhD, director of the Sanford Children’s Health Research Center at Sanford Burnham Prebys, has received the William W. Ruch Distinguished Endowed Chair. The newly created chair will support Freeze’s research on congenital disorders of glycosylation (CDGs) and rare children’s diseases.

Freeze is a world-renowned expert on CDGs, a severe group of diseases that affect fewer than 2,000 children worldwide. He has been working on CDGs for more than 25 years and has worked with hundreds of patients from around the world. The condition occurs when sugar molecules on many of our proteins are absent or incomplete, leading to serious, often fatal, malfunctions in various organ systems throughout the body.

In 2007, Ruch established “The Rocket Fund” to support the heroic battle against heartbreaking rare and neglected children’s diseases. Ruch’s interest in CDG research was a result of her own family’s experience.

“My grandson John, whom we called ‘Rocket,’ was born with a CDG,” says Ruch. “Our doctors were able to quickly diagnose the disease, thanks to Dr. Freeze, who has now become a lifelong friend. Though we weren’t able to save Rocket, we are keeping his legacy alive by establishing this endowed chair to support Dr. Freeze and his commitment to finding a cure.”

Dinah Ruch

Freeze’s impact on the lives of families living with CDG extends well beyond the walls of his lab. Since 2010, he has organized an annual Rare Disease Symposium, where scientists, doctors and families gather from around the world to discuss the latest research and meet other families coping with rare diseases.

“Patients are often diagnosed with rare genetic diseases at birth or in childhood, and families are usually overwhelmed by dealing with the diagnosis and complicated care regimens,” says Freeze. “I’m fortunate to have the opportunity to provide support to help these families through our work at the Sanford Children’s Health Research Center.

“I’m so very grateful to receive this honor from Dinah Ruch—and will continue my life’s work to provide education and resources so that people may live with the highest quality of life possible, and may one day, in fact, thrive.”

Institute News

Hudson Freeze joins experts to discuss testing to help CAD-affected children

AuthorSusan Gammon
Date

November 10, 2023

Hudson Freeze joined an international panel of genetics experts on CAD deficiency: Beyond the genetics—a podcast offered by the Journal of Inherited Metabolic Disease.

The researchers shared how clinical and functional genomics tests can accelerate the diagnosis of CAD-deficient patients and enable their timely treatment with uridine, a nutritional supplement that has dramatically improved the lives of other children with the condition.

“The effect of uridine for some children with CAD deficiency is nothing short of amazing. These kids go from bedridden to interacting with people and moving around,” says Freeze, PhD, director of the Human Genetics Program at Sanford Burnham Prebys. 

CAD deficiency is a congenital disorder of glycosylation (CDG), an umbrella term for more than 170 disorders caused by mutations that impair glycosylation; the complex process by which cells build long sugar chains that attach to proteins called glycoproteins.

These tests allow us to identify CAD genetic variants, and to help affected children get the best treatment possible,” adds Freeze.
 

Institute News

Where science meets patients: Sanford Children’s Research Center hosts inaugural symposium

AuthorMiles Martin
Date

May 10, 2023

The event celebrated 16 years of progress at the Center and connected scientists with the people most impacted by their work.

The Sanford Children’s Health Research Center at Sanford Burnham Prebys recently hosted its first-ever Children’s Health Research Symposium, which brought scientists and families together to learn about the latest research tackling childhood diseases.

“We’re all here because we want to improve the health of children,” said President and CEO David A. Brenner, MD, during his opening comments. “But this event also shows the amazing amount of collaboration and collegiality across San Diego, because we have all types of people together from different backgrounds who want to develop therapies and cures for children affected by disease.”

The Sanford Children’s Health Research Center was established in 2008 with the help of a generous gift from Institute namesake T. Denny Sanford. Since then, the Center has been a world leader in children’s health research.

“T. Denny Sanford made an investment in children’s health 15 years ago, and I think that investment has paid off pretty well so far,” said Center director Hudson Freeze, PhD, in his introduction to the first scientific session. Freeze is among the world’s leading experts on congenital disorders of glycosylation (CDG), a rare group of genetic disorders that can cause serious, sometimes fatal, malfunctions of different organs and systems in the body.

“We’ve published over 600 scientific papers, and about half of those are translational studies, which means they’re helping turn scientific discoveries into real treatments for patients,” adds Freeze.

Professor Hudson Freeze with the Omler family

Professor Hudson Freeze with the Omler family

The day included presentations from researchers at Sanford Burnham Prebys, as well as from other research organizations studying childhood diseases. However, the highlight of the event was the afternoon reception, in which scientists had the opportunity to mingle and share a meal with families affected by rare childhood diseases.

Professor José Luis Millán (center) with the Fischer family (left) and the Britt family (right)

Professor José Luis Millán (center) with the Fischer family (left) and the Britt family (right)

Each researcher briefly introduced the family affected by the illness the scientist studies. This list included many longtime friends of the Institute, such as Damian Omler, who lives with a rare form of CDG; and Morgan Fischer, who was born with soft bone disease. Today, thanks to the help of a drug developed based on the research of Institute professor José Luis Millán, PhD, Morgan is a thriving teenager. This drug is also helping other children living with soft bone disease, including 10-year-old Aubrey Britt, who was in attendance with her family as well.

“Something so important that we keep as a tradition for scientific events at our Institute is to involve families that have been touched by the work of our faculty,” said Freeze. “They’re why we’re all here.”

The full list of talks included: 

Sanford Children’s Health Research Center

  • José Luis Millán, PhD “Developing therapeutics for soft bones and ectopic calcification disorders”
  • Duc Dong, PhD “From hope for few to drug for many—why rare is precious”
  • Evan Snyder, MD PhD “A clinical trial using human neural stem cells for neuroprotection in perinatal asphyxia, a major cause of cerebral palsy in kids”
  • Anne Bang, PhD “Drug screens of human-induced pluripotent stem cell (hiPSC) derived neuronal networks on multi-electrode arrays”
  • Pamela Itkin-Ansari, PhD “Proinsulin misfolding in diabetes”
  • Yu Yamaguchi, MD PhD “Multiple hereditary exostoses—from genetics to potential drug targets”
  • Hudson Freeze, PhD “Fucose therapy: Revising bedrock biochemistry”

Sanford Health

  • David Pearce, PhD “From rare diseases to type-1 diabetes: Research that impacts children at Sanford Health”

Frontiers in Congenital Disorders of Glycosylation Consortium

  • Eva Morava, MD, PhD “Clinical trials in Glyco-land”
  • Ethan Perlstein, PhD “Precision drug repurposing: Patient avatar to pioneer study to Phase 3 trial”

UC San Diego

  • Lars Bode, PhD “Human milk-based therapeutics and diagnostics to protect preterm babies from necrotizing enterocolitis”
  • Stephanie Cherqui, PhD “Hematopoietic stem cell gene therapy for cystinosis: Mechanism of action and clinical trial update”
Institute News

Rare Disease Day gathers scientists, doctors and families

AuthorMiles Martin
Date

March 3, 2022

The 2022 Rare Disease Day Symposium took place last weekend at the Dana On Mission Bay Resort in San Diego. The event, sponsored by Sanford Burnham Prebys and CDG CARE, brought together researchers, clinicians and families from around the world to discuss new medical breakthroughs and meet other families living with rare diseases.

The 2022 Rare Disease Day Symposium took place last weekend at the Dana On Mission Bay Resort in San Diego. The event, sponsored by Sanford Burnham Prebys and CDG CARE, brought together researchers, clinicians and families from around the world to discuss new medical breakthroughs and meet other families living with rare diseases.

Rare Disease Day is celebrated on the last day of February to raise awareness for rare diseases, defined by the United States government as those that affect fewer than 20,000 people. Although there are more than 7,000 individual types of rare diseases that affect more than 30 million people in the United States, this year’s conference gathered more than 200 people focused on CDG, an extremely rare group of genetic disorders that affect children. 

CDG, which stands for congenital disorders of glycosylation, occurs when sugar molecules on many of our proteins are absent or incomplete. CDG causes serious, often fatal, malfunctions in various organ systems throughout the body.

“This is a chance for the global CDG community to come together, support one another and continue to try to find treatments,” says Hudson Freeze, PhD, director of the Human Genetics Program at Sanford Burnham Prebys. “It’s always my favorite weekend of the year, and I’m thrilled that we’re able to do it again safely.” Freeze’s primary research focus is CDG, and he has personally worked with more than 300 patients. 

Exchanging knowledge
The three-day symposium opened Friday morning with introductory comments from three important figures and philanthropists in Sanford Burnham Prebys’ history: T. Denny Sanford, Malin Burnham and Debra Turner. Congressman Scott Peterson also spoke on the importance of funding medical discoveries. 

“Our job is to make a positive difference. We do that best when we all work together,” said Sanford in his video introduction. “Congratulations on all your work. You make me very proud.”

This year, 19 scientists and clinicians in total spoke on the latest research in modeling, treating and understanding CDG. The full program of presentations can be found here.

Connecting families
Although Rare Disease Day is an important opportunity to share the latest scientific research, one of the highlights of the event doesn’t involve science at all. To provide space for families to take a break from the presentations and socialize, staff and volunteers transformed the Bayside Conference Room of the Dana resort into a child care and respite area packed full of toys and games.

In addition to giving families space to play, Rare Disease Day hosted several group activities for families, including a magic show on Saturday and a surprise visit on Sunday morning from Disney’s Anna and Olaf.

​Longtime friend of the institute Damian Omler, a thirteen-year-old who is the only person living with his rare genetic mutation, had a great time dancing along to “Let it Go” and playing catch with his father, Donnie.

And while the joy in the respite conference room was palpable, there was something else, less tangible, in the air as well: hope.

“Meetings like this bring us hope and help us raise awareness for CDG,” says Donnie. “That gives us a sense of purpose each and every time we attend the conference. And we won’t stop, even 20 years from now.” 

Omler family

Damian Omler and his family, parents Donnie and Gracie and brother DJ, had a great time at Rare Disease Day the year (image credit: CDG CARE)

Institute News

Rare disease in the time of COVID: Damian Omler’s story

AuthorMiles Martin
Date

February 25, 2022

How a one-of-a-kind kid and his family stay connected during the pandemic

Thirteen-year-old Damian Omler is the only person in the world with his rare genetic mutation, which presents him and his parents (Donnie and Gracie) and 11-year-old brother, DJ, with major challenges every day. Damian’s condition—a congenital disorder of glycosylation, or CDG—causes him to have seizures, and requires him to have help with routine tasks such as using the restroom and dressing. And, he must use a wheelchair for mobility.

Despite these obstacles, Damian lives a rich, fulfilling life. But protecting his health during the COVID-19 pandemic threw a major wrench into the Omlers’ routine.

“In the early days of the pandemic, we didn’t know what kind of effect COVID would have on Damian, so we had to take a lot of precautions, including not seeing a lot of family and friends, which was very isolating,” says Donnie. 

“Damian is also very sociable—we call him the hot potato because he just goes from person to person, so the pandemic was hard for him in that way as well,” adds Gracie. “We were so glad when we were finally able to get our family vaccinated so we could be more a part of the community.”

Staying at home had its ups and downs for the Omlers
Although most of us can relate to the isolation of the pandemic, there are unique challenges that come with being a family living with a rare disease during this time. 

“Appointments were so much more difficult for Damian over Zoom,” says Gracie. “I had to help him through his physical therapy, and I was nervous that I might be doing it wrong or even hurting him.”

Despite these complications to Damian’s care, there were some unexpected silver linings to spending more time at home.

“Damian does choir and dance for his electives at school,” says Gracie. “I love that with remote learning I was able to interact with him and the class and learn the dances with him.”

“She definitely got a lot of accolades from the teachers for being one of the parents who participates,” adds Donnie, jovially. 

Returning to Sanford Burnham Prebys’ Rare Disease Day
The Omlers are longtime friends of Sanford Burnham Prebys. They first visited the Institute in 2012, when Damian was 5. Before then, they’d been struggling to find a diagnosis for their son, who’d been missing developmental milestones since he was born. 

With the help of Institute professor Hudson Freeze, PhD, who has dedicated his career to CDG research, doctors were finally able to diagnose Damian’s specific case in 2015. 

“After the diagnosis, we sat and smiled for a long time,” says Donnie. “Just knowing was such a relief.”

Since 2016, the Omlers have also been regular participants in the Institute’s Rare Disease Symposiums, which help patients, researchers and clinicians from around the world connect in order to support one another and learn about the latest advances in rare disease research.

The most recent Rare Disease Day the Omlers attended was in 2020, just before the pandemic took hold. And although the event didn’t take place last year, this year it’s back stronger than ever. And the Omlers can’t wait to be back too.

“Meetings like this bring us hope and help us raise awareness for CDG,” says Donnie. “That gives us a sense of purpose each and every time we go. And we won’t stop, even 20 years from now.” 

The 2022 Rare Disease Day Symposium & CDG/NGLY1 Family Conference will take place February 25–27 at the Dana Hotel on Mission Bay in San Diego. Scientific sessions will be held on the 25th and 26th, and the Family Conference will take place on the 27th.

And if you see a young man acting like a social “hot potato” on the 27th, that’s Damian. He’ll probably say hi to you.

Institute News

One at a time: How a Sanford Burnham Prebys professor changes patient lives

AuthorMiles Martin
Date

February 22, 2022

Having worked for decades to improve the lives of children with rare diseases, Hudson Freeze is still on the case.

Hudson Freeze, PhD is not your average researcher. His work focuses on congenital disorders of glycosylation, or CDG, a severe group of diseases that affect fewer than 2,000 children worldwide. Those conditions occur when sugar molecules on many of our proteins are absent or incomplete. That can lead to serious, often fatal, malfunctions in various organ systems throughout the body.

Although Freeze is not a clinician, he is deeply involved in identifying these rare CDG mutations, and providing families with answers to what is often a challenging diagnosis. Because CDG is a group of incurable diseases, families of children with CDG reach out to Freeze almost weekly, seeking help.

“If someone asks for help, I say, ‘Let me try,’” says Freeze. “Any glimmer of hope is a path worth pursuing, anything to make life easier for children with CDG.”

Freeze has been working on CDG for more than 25 years and has worked with more than 300 patients, and he has kept in touch with many of them over the years.

“Not a day goes by when I don’t think of them and their struggles—but mostly their smiles,” says Freeze. “It’s the reason we won’t give up on trying to understand them and maybe even finding treatments.”

Treating disease with sugar
Although CDG presents as permanent and irreversible mutations, Freeze’s research has been instrumental in discovering an approach to alleviate severe symptoms of CDG—such as seizures—in certain patients. The answer: sugar. Thanks to Freeze and others, there are about 30 patients worldwide who are now taking mannose, a simple sugar molecule, to help alleviate their CDG symptoms.

Today, the strategy of treating diseases with simple sugar molecules is being explored in other glycosylation disorders, as well as less-rare diseases such as multiple sclerosis, cancer and diabetes.

Hudson Freeze, PhD poses with Damian Omler, who has CDG.

Hudson Freeze, PhD poses with Damian Omler, who has CDG.

Rare Disease Day at Sanford Burnham Prebys
Freeze’s impact on the lives of families living with CDG extends well beyond the walls of his lab. Since 2010, he has organized an annual Rare Disease Day Symposium each February, where scientists, doctors and families gather from around the world to discuss the latest research and meet other families coping with rare diseases. Last year, the pandemic forced the Institute to press pause on the event, but this year, Rare Disease Day is back in San Diego and stronger than ever.

“It’s a chance for the global CDG community to come together, support one another and continue to put our heads together to find treatments,” says Freeze. “It’s always my favorite weekend of the year, and I’m thrilled that we’re able to do it again safely.”

The 2022 Rare Disease Day Symposium & CDG/NGLY1 Family Conference will take place February 25–27 at the Dana on Mission Bay Resort in San Diego. Scientific sessions will be held on the 25th and 26th, and the Family Conference will take place on the 27th.

Register Here

Institute News

From child neurology to stem cells: An interview with Evan Snyder

AuthorMiles Martin
Date

November 18, 2021

What do Evan Snyder and Sigmund Freud have in common? Both radically changed how we see the human brain.

In a first for San Diego, Sanford Burnham Prebys Professor Evan Y. Snyder, MD, PhD has been featured in the second edition of Child Neurology: Its Origins, Founders, Growth and Evolution, a collection of biographies detailing the lives of innovators in child neurology throughout history. 

To celebrate this honor, we caught up with Snyder to discuss how his work in child neurology led him to make foundational discoveries in the fields of stem cell biology and regenerative medicine, as well as where these fields are headed in the future.

“Plasticity, both at the “macro” sociological level and at the “micro” clinical level, always fascinated me. And that fascination with resilience and my curiosity about its source led to my early discoveries surrounding stem cells in the brain.”

How does it feel to be included in this book?
Snyder: Ever since I was a student, I thumbed through the first edition and was inspired by all these old images of people from the early days of the field. To see my chapter in there along with the likes of Sigmund Freud is mind-blowing. It means a lot to be included. 

How did your work in child neurology lead you to work on stem cells?
Snyder: I was always interested in resilience. As a kid, I worked at a camp for children with various challenges: poverty, behavioral issues, disrupted home lives. These children were being raised in terribly deprived environments with challenging family situations, but they adjusted and bore up without complaint. When we took them out of that environment, even for a short time, they flourished. I never forgot that lesson. 

Later, doing my pediatric and neurology residencies and neonatology fellowship at Boston Children’s Hospital, I would care for babies in the newborn intensive care unit with seemingly devastating brain injuries. As a neurologist, I would often follow up with those kids months or even years later.

Despite the horrible injuries they had sustained as newborns, by the time they were children, some had recovered to the point where it was hard to notice a deficit—they were achieving their developmental milestones, were seizure-free off medications, and playing and interacting like normal kids.

It astounded me that some children could have that resilience while I knew that adults with those same injuries would likely be incapacitated. Plasticity, both at the “macro” sociological level and at the “micro” clinical level, always fascinated me. And that fascination with resilience and my curiosity about its source led to my early discoveries surrounding stem cells in the brain.

“There was no notion that there could be such regenerative cells in a solid organ, particularly one that was thought to be as static as the brain.”

How did your early work shape the stem cell field?
Snyder: Before I, and a few others, began examining the molecular biology of cell types that composed the brain, there really was no research area called the “stem cell field”—at least not for solid organs like the brain. What was known clinically about stem cells in the early ’80s was confined to the making of blood cells for bone-marrow transplants.

The goal of hematologists back then was to identify the youngest cell in the bone marrow that could give rise to other types of blood cells. That cell, called the hematopoietic stem cell, was difficult to isolate and identify, but it was always assumed to exist because a healthy person’s blood is always turning over.

There was no notion that there could be such regenerative cells in a solid organ, particularly one that was thought to be as static as the brain. ​My postdoctoral project at Harvard unexpectedly forced me to challenge that notion. I set out to study how the brain is put together by isolating all of its different cell types into separate containers, then building a miniature brain in a dish, cell by cell.

But from the very beginning, I had difficulty making containers of cells with a single specific identity, even if I started with what seemed to be a single cell and its identical sibling cells. The young cells I isolated always seemed to be changing their identities, even though they started out looking the same.

Colleagues observing my initial results assumed it was just an odd tissue culture artifact, but then I thought back to those kids with brain injuries for whom I’d cared, and I started thinking that maybe what I was observing wasn’t an artifact at all; maybe these cell types were one of the repositories of plasticity in the brain I had puzzled over—a “stem cell” of sorts.

To prove that notion, I quietly transplanted those stem cells into a mouse brain and waited two years to examine the brain. The cells I’d transplanted were not only still there but they had integrated into the fabric of the brain and taken on different identities depending on which part of the brain they took up residence.

This observation—which I made alone, in the middle of the night under a microscope—gave me chills that I still recall today.

I shuddered with excitement at the implication of what I was seeing. The central nervous system was always thought to be a part of the body that could not regenerate at all, yet here I had isolated cells from one mouse brain and used them to populate another brain with multiple cell types in multiple locations. I could make pots of those donor cells to be transplanted whenever and wherever I liked, like a bone-marrow transplant in the brain.

The potential seemed enormous, and my curiosity to see where that potential might lead in terms of understanding and healing the human brain became the focus of my lab—first at Harvard and then at Sanford Burnham Prebys.

“Finding how we could address unmet medical needs became somewhat like looking for a lock for which we already had a key.”

How did regenerative medicine enter the picture?
Snyder: Other people started finding stem cells, not only in the brain but everywhere in the body. In the mid-1990s, the focus then became figuring out how to exploit them. Those efforts helped give rise to the new field of regenerative medicine, where the emphasis is on repairing and regrowing tissues rather than just treating the symptoms of a disease. 

We found that we could put these neural stem cells almost anywhere in the nervous system, particularly if that region was diseased or injured—and hit the “reset button” for that region. I was more interested in studying the overall biology of this new cell type rather than focusing on any one illness. So, while learning about this cell, we found many different ways that its biology could be exploited therapeutically.

Finding how we could address unmet medical needs became somewhat like looking for a lock for which we already had a key. Looking for those locks—the therapeutic obstacles that stem cell biology might help circumvent—is where my clinical experience proved handy. 

One example was brain tumors. I’m not an oncologist, but I’d learned from my studies that stem cells will naturally go to regions where pathology exists in the brain, even over long distances from their point of implantation. So, by putting a therapeutic gene into a neural stem cell, I could use that cell like a “heat-seeking missile” to deliver that gene and its product to where it might be needed.

Brain tumors are often so difficult to cure because we can’t safely access all the brain areas where the tumor has infiltrated. The neural stem cell seemed a perfect way to deliver a tumor-killing gene to those disseminated tumor cells simply by harnessing their natural powers. That strategy has now moved into clinical trials, and the use of stem cells to deliver therapeutic genes is being used for other conditions as well.

What came next in the history of stem cells?
Snyder: If we fast-forward a few decades from the beginnings of regenerative medicine, we now know a lot more about the different “flavors” of stem cells, how they work, and how they can be therapeutic.

One of the new flavors of stem cells is induced pluripotent stem cells, or iPSCs. One can take a mature skin or blood cell and push it back to a state where it loses all of its organ identity, and then force it to become a completely different mature cell type.

In other words, plasticity can go in both directions: an immature cell type can take on multiple identities going forward in development, and a mature cell type can be pushed back in developmental time to the point where it can now make different choices. 

Importantly, that induced stem cell retains many of the characteristics of the person from which it originally came, including diseases and genetic defects that individual may have had. This realization gave rise to the idea of modeling diseases in a dish. 

This approach of using iPSCs works best for diseases where we know the specific cell type, pathway, gene, or protein that causes the disease, but we wondered if iPSCs could help for diseases where we have no clue which gene, protein, cell type, or pathway is causing a particular disease. 

Psychiatric disorders are the poster children for such complex and mysterious diseases. To date, there’s no psychiatric disease that we can attribute to a specific defect in a particular gene or protein. Nevertheless, I felt confident that we could use iPSCs to discover the underlying cause of challenging diseases where we have no prior knowledge of what has gone wrong.

I decided to zero in on bipolar disorder because, as a physician, I knew that this condition did have an effective treatment—lithium—which had been accidentally discovered many years ago without knowing why it seemed to help some patients.

I reasoned that If we knew lithium’s target, we could work backward, recognizing that whatever lithium was changing was the underlying cause of bipolar disorder. That strategy worked. We used the iPSCs to map the lithium-response pathway, and we learned that errors in the regulation of that pathway were the likely cause of bipolar disorder. With that in mind, we could discover drugs better than lithium.

In this branch of regenerative medicine, it’s not the stem cell that goes into the patient, but rather the drug discovered by the stem cell that goes into the patient, but this would not be possible if we could not use stem cells to give us those patient-specific disease models.

“Organs and their diseases never involve just one type of cell. If we want to improve the way we model diseases, we need to re-create and target that complexity.”

Where is the field going from here?
Snyder: Our models for diseases are only going to get better. We’re moving away from looking at small numbers of homogenous cells in a flat dish toward creating more complex three-dimensional mini-organs from a patient’s stem cells, directing those cells to become the many different interacting cell types that make an organ.

Organs and their diseases never involve just one type of cell. If we want to improve the way we model diseases, we need to re-create and target that complexity.

As far as using stem cells directly for therapy, we’re becoming much more sophisticated in deriving the cell type we need and directing it to the specific regions in need of repair. Furthermore, as our three-dimensional representations of organs in a dish become more sophisticated, these mini-organs may themselves become the material we transplant.

I’m also certain that there are applications for stem cells we haven’t conceived of yet.

Every generation of scientists needs to be reminded that one is constantly going to be surprised; one’s initial hypotheses, based on old understandings, are likely going to be wrong. One must be prepared to revise those hypotheses when the data—even if counter to expectations—leads one in an unconventional or inconvenient direction.

Although we’ve made much progress in the stem cell field over the past 30 years, there’s so much we don’t know. And, even when we think we know something, we probably don’t. None of my work would have been possible if I’d kept my blinders on and not been able to see the connections between different areas in which I was working—including allowing my work in the clinic and as a social worker to inform my scientific vision. That mindset is critical to the future of science.

Institute News

Fighting rare diseases: Finding treatments and bringing hope to families

AuthorMonica May
Date

March 23, 2021

The majority of rare diseases affect children, most of whom have an underlying genetic cause for their condition that is incurable.

The majority of rare diseases affect children, most of whom have an underlying genetic cause for their condition that is incurable.

Often, their own doctors have never heard of their disease, let alone know how to treat it.

But there is someplace they can turn to for help. The Human Genetics Program at Sanford Burnham Prebys provides insights into the genes and environmental factors that play a role in the development of childhood diseases. Their work often leads to better ways to diagnose, treat, and sometimes, even cure children.

On March 18, 2021, two patients whose lives were saved by discoveries made by Hudson Freeze, PhD, and José Luis Millán, PhD, joined the scientists for a conversation about what this work means to them and how their lives have been impacted. Watch the full discussion below.