Andrei Osterman Archives - Sanford Burnham Prebys
Institute News

A potential new weapon against a deadly, drug-resistant bacterial pathogen

AuthorScott LaFee
Date

January 8, 2024

Carbapenems are a class of highly effective antibiotics that are often used to treat severe bacterial infections. They are usually reserved for known or suspected bacterial infections resistant to other drugs.

Carbapenem-resistant Acinetobacter baumannii (CRAB) is, as the name suggests, impervious to carbapenems; and it has become a major global pathogen, particularly in hospital settings and conflict zones. No new antibiotic chemical class with activity against A. baumannii has successfully emerged in more than 50 years.

In a paper published January 3, 2024, in Nature, a multi-institutional team including Andrei Osterman, PhD, at Sanford Burnham Prebys, with colleagues at Roche—the Swiss-based pharmaceutical/healthcare company—and others, describe a novel class of small-molecule tethered macrocyclic peptide (MCP) antibiotics with potent antibacterial activity against CRAB. Osterman’s lab provided critical data and discoveries related to the drug target and mapping of drug-resistant mutations.

Developing a new class of antibiotics effective against CRAB is critical. The bacterium is resistant to nearly all antibiotics and is difficult to remove from the environment. It poses a particular health threat to hospitalized patients and nursing home residents, with an estimated mortality rate in invasive cases of 40–60%.

The World Health Organization and the Centers for Disease Control (CDC) have both categorized multidrug-resistant A. baumannii as a top-priority pathogen and public health threat.

In the new study, Osterman and colleagues applied an experimental evolution approach to help identify the drug target (the LPS transporter complex) of a new class of antibiotics—a macrocyclic peptide called Zosurabalpin—and elucidate the dynamics and mechanisms of acquired drug resistance in four distinct strains of A. baumannii.

They used an integrative workflow that employs continuous bacterial culturing in an “evolution machine” (morbidostat) followed by time-resolved, whole-genome sequencing and bioinformatics analysis to map resistance-inducing mutations.

In addition to a mechanistic understanding (crucial from a regulatory perspective), the new information also helped reveal the drug-binding site. A related paper in the same issue experimentally verified the findings.

“This comprehensive mapping of the drug-resistance landscape yields valuable insights for a variety of practical applications,” says Osterman, “from therapy optimization via genomics-based assessment of drug resistance/susceptibility of bacterial pathogens to a rational development of novel drugs with minimized resistibility potential.”

A commentary in Nature said the research was “cause for cautious celebration” and urged further development.

Institute News

Sanford Burnham Prebys research plays a key role in developing microbiome-directed complementary food to help save malnourished children

AuthorScott LaFee
Date

January 4, 2024

Among the consequences of childhood malnutrition is the underdevelopment of their gut microbiomes, critical to human health, from innate immunity to appetite and energy metabolism.

Although malnourished children gain some weight and grow better when fed a nutrient-rich diet, they do not catch up to their well-fed counterparts—and their gut microbiomes do not recover.

In a 2021 clinical trial, researchers at Washington University School of Medicine showed how a newly designed therapeutic food—a unique mix of peanuts, bananas and other foods dubbed microbiome-directed complementary food, or MDCF—more effectively nourished healthy gut microbial communities than standard dietary supplements.

Now, with bioinformatics support from Andrei L. Osterman, PhD, professor in the Immunity and Pathogenesis and Cancer Metabolism and Microenvironment programs at Sanford Burnham Prebys  and his colleagues Dmitry Rodionov, PhD, and Alex Arzamasov, the multi-institutional scientific team has published new research that identifies and describes the bioactive elements of microbiome-directed food.

“These are naturally occurring carbohydrate structures that could, in theory, be recovered in large quantities from the by-product streams of food manufacturing and be used to produce prebiotics,” said senior study author Jeffrey I. Gordon, MD, the Dr. Robert J. Glaser Distinguished University Professor at Washington University.

“We also have identified the microbes that process these food components, and in theory, there is potential for the organisms themselves to be part of a therapeutic intervention in children completely lacking these beneficial gut microbes.”

Osterman’s lab contributed bioinformatics analyses of 1,000 new metagenomically assembled genomes, or MAGs, representing the gut microbiomes of healthy Bangladeshi infants. The analyses included genome-based inference of the presence or absence in these MAGs of functional metabolic pathways for 106 major nutrients and intermediary metabolites.

“These predictions enabled the assessment of the microbiome-wide representation or enrichment of dietary carbohydrate utilization capabilities across numerous biospecimens from a randomized, controlled trial of MDCF in Bangladeshi children with moderate acute malnutrition,” said Osterman.

“The analyses helped elucidate glycan components of MDCF metabolized by bacterial taxa that are positively associated with healthy weight growth. The knowledge will help guide the therapeutic use of current MDCF and enable development of new formulations.”

Childhood undernutrition is a global scourge. In 2020, an estimated 149 million children under the age of 5 had stunted growth (low height for age), and 45 million exhibited stunting (low weight for height). More than 30 million children worldwide have moderate, acute malnutrition.

Undernutrition and its consequences are the leading causes of disease and death for children in this age range. An estimated 3 million children die each year due to poor nutrition and hunger.

Institute News

Sanford Burnham Prebys and Roche fight back against antibiotic resistance

AuthorMiles Martin
Date

December 8, 2021

Researchers from Sanford Burnham Prebys have teamed up with prominent drug developer Roche Pharma to learn how bacteria develop antibiotic resistance.

Their new results, published in the journal mBio, are one piece of a long-standing collaboration between the two organizations, the goal of which is to mitigate the growing threat of antibiotic resistance by developing more “irresistible” drugs and by helping improve antibiotic prescribing practices.

“The emergence of antibiotic resistance is inevitable for any single drug, new or old. It’s only a question of time,” says senior author Andrei Osterman, PhD, a professor at Sanford Burnham Prebys. “But the precise time is different for every drug and every microbe, so studying when and how resistance to antibiotics evolves gives us powerful information for improving antibiotic treatment.”

Antibiotic resistance develops rapidly

When a patient is treated with antibiotics, most individual bacteria die, but a few cells will survive, usually as a lucky consequence of a random genetic mutation. These survivors go on to multiply into a whole new population of antibiotic-resistant bacteria.

“The development of antibiotic resistance is a strictly Darwinian process, very similar to evolution in larger organisms,” says Osterman. “The difference is that in bacteria, it happens much more rapidly, which makes antibiotic resistance one of the most pressing challenges facing medicine today.” 

Although the speed at which evolution occurs in bacteria makes antibiotic resistance a threat, the researchers were also able to take advantage of this speed to study its development. The team cultured three species of bacteria in a morbidostat, a device that allows bacteria to grow continuously over multiple generations while being dosed with antibiotics. Although theirs was not the first morbidostat device, the team designed a new, more effective version of the system for their experiments.

“It’s like an evolution machine, letting us watch the development of antibiotic resistance in real time and in an environment that more accurately models what happens to bacteria in a clinical setting than other approaches,” says Osterman. “This gives us a clearer and more comprehensive view of resistance than we’ve ever had before.”

Different bacteria develop resistance differently

By observing the bacteria’s evolution in the morbidostat and sequencing their genomes as they evolved, the researchers found that all three species had a similar pattern of resistance development. However, they also found subtle differences in the ways certain genes were expressed, particularly those that help bacteria remove toxins, a critical process in developing resistance.

“It’s like three remakes of the same movie by three different directors, and their comparison gives us a wealth of information to guide the development and use of antibiotics,” says Osterman. 

Understanding resistance is critical to reducing its harm

Working with Roche, the team has completed similar studies on several other classes of antibiotic drugs, which is helping Roche identify promising candidates for antibiotics that are less prone to resistance.

And because antibiotic resistance is often not assessed in drug candidates until years into the process, using resistance to screen for drug candidates this way could save the biomedical industry millions of dollars and help patients benefit from effective drugs sooner.

“A completely ‘irresistible’ drug is a holy grail, something we can never truly achieve,” says Osterman. “But some drugs are less resistible than others, and our methods allow us to figure out which is which in a systematic way.”

In addition to helping develop new drugs, the researchers claim that their findings are easily translatable to the clinic, where doctors can use detailed knowledge of resistance to select optimal drug combinations with less likelihood of failure due to resistance.

“We are moving away from trial-and-error approaches in medicine and moving toward being able to predict exactly what drugs will work best for each patient,” says Osterman. “It is going to take time, effort and money to make this happen, but it will all be worth it if we’re able to alleviate the threat of antibiotic resistance and help save lives, which I’m confident can be done.”

Institute News

Vitamin A deficiency has an outsize impact on gut microbes

AuthorSusan Gammon
Date

May 30, 2017

Deficiencies in vitamins and minerals are a major global health threat, affecting two billion people worldwide. Scientists have extensively studied how human biology is affected by imbalances in vitamins and minerals, also known as micronutrients. But much less is known about the effects of micronutrient deficiencies on gut microbes, which also play important roles in human health and disease.

Sanford Burnham Prebys Medical Discovery (SBP) researchers provided an important contribution to a new study, which addressed this gap in knowledge by comparing the effects of deficiencies in vitamin A, folate, iron, and zinc on gut bacteria in mice. As reported May 17th in Science Translational Medicine, vitamin A deficiency had the largest effect on bacterial community structure and gene activity, increasing the abundance of Bacteroides vulgatus, a species previously associated with host growth.

“The current study provides preclinical evidence supporting the concept that the treatment of micronutrient imbalances needs to be considered from the perspective of not only the human host, but also the host’s gut microbiota,” says study co-author Andrei Osterman, PhD, a professor at SBP.

Hidden hunger

Micronutrients enable the body to produce enzymes, hormones and other molecules essential for proper growth and development. The human body doesn’t need a large amount of these substances, but the consequences of their absence are severe. In particular, imbalances in iron, zinc, folate and vitamin A represent a pressing global public health problem, disproportionately affecting children and pregnant women who live in low-income countries.

To examine the effects of iron, zinc, folate and vitamin A deficiencies on gut microbes, Osterman teamed up with senior study author Jeffrey Gordon, M.D, a professor at Washington University School of Medicine. They first colonized mice with a large and diverse community of human gut bacterial strains. Next, they subjected the mice to a diet oscillation, which began with a micronutrient-sufficient diet, followed by a diet that lacked one of the four micronutrients under investigation, followed by a return to the original diet.

By sequencing microbial RNA and DNA in fecal samples, the researchers examined the effect of diet on the bacterial community structure and gene activity. Surprisingly, they found that vitamin A deficiency had the most profound effect, significantly increasing the abundance of B. vulgatus. Repletion of vitamin A in the diet decreased the abundance of this bacterial species, which has been positively associated with host growth in mouse models of postnatal human gut microbiota development.

Reassessing supplements

Currently, the World Health Organization recommends high-dose vitamin A supplementation for infants and children in high-risk areas, for good reason. Deficiency in vitamin A, which plays important roles in vision, growth, and immune function, is a significant public health problem in more than half of all countries. It is the leading cause of preventable blindness in children and increases the risk of disease and death from severe infections. In pregnant women, vitamin A deficiency causes night blindness and may increase the risk of maternal mortality.

Although adequate levels of vitamin A are crucial for survival, some evidence suggests that micronutrient supplementation can actually cause health problems. The new findings add to these concerns, raising the worrying possibility that vitamin A supplementation might have the unintended consequence of inhibiting the growth of infants and children. But for now, there is not enough evidence to conclude that vitamin A imbalances influence host growth through their effects on B. vulgatus.

“However, our results provide a rationale and a preclinical method for examining whether current vitamin A dosing regimens, and by extension other critical micronutrients, have unintended and deleterious effects on the developing gut microbiota of undernourished children, whose healthy growth such treatments are intended to promote,” Osterman says.

Institute News

New method to identify bacteria in the gut may facilitate development of probiotics

Authorjmoore
Date

January 19, 2016

The gut microbiome, the community of bacteria living in the intestines, has an enormous impact on human health, affecting risk for obesity, inflammatory bowel disease (IBD), neurological disorders, and even cancer. Accordingly, there has been an explosion of research in this area in the past ten years, with the long-term goal of developing ways to manipulate the microbiome to promote the survival of bacteria that promote health and/or eliminate those associated with disease. Continue reading “New method to identify bacteria in the gut may facilitate development of probiotics”

Institute News

Melanoma’s addiction to glutamine is the basis for cancer growth

Authorsgammon
Date

February 17, 2015

Researchers at Sanford-Burnham have discovered that without a source of glutamine—one of the 20 amino acids used to build proteins—melanoma cells will stop proliferating and die. Their craving for glutamine stems from their ability to “abuse” this essential nutrient by using it as an additional source of carbon and energy. The findings present a rational basis for a treatment strategy that limits the supply of glutamine to tumors, potentially through nutritional interventions or inhibitors of glutamine uptake. The results of the study appear online in Oncotarget today. Continue reading “Melanoma’s addiction to glutamine is the basis for cancer growth”