Artificial intelligence (AI) Archives - Page 2 of 2 - Sanford Burnham Prebys
Institute News

Using machines to personalize patient care

AuthorGreg Calhoun
Date

July 30, 2024

Artificial intelligence (AI) and other computational techniques are aiding scientists and physicians in their quest to create treatments for individuals rather than populations

The Human Genome Project captured the public’s imagination with its global quest to better understand the genetic blueprint stored on the DNA within our cells. The project succeeded in delivering the first-ever sequence of the human genome while foreshadowing a future for medicine once considered to be science fiction. The project presaged the possibility that health care could be personalized based on clues within a patient’s unique genetic code.

Chavez lab

The Chavez Lab

While many more people have undergone genetic testing through consumer genealogy and health services such as 23andMe and Ancestry than through health care systems, genomic sequencing has influenced clinical care in some specialties. Personalized medicine—also known as precision medicine or genomic medicine—has been especially helpful for people suffering from rare diseases that historically have been difficult to diagnose and treat.

Scientists at Sanford Burnham Prebys are employing new technologies and expertise to test ways to improve diagnoses and customize treatments for many diseases based on unique characteristics within tumors, blood samples and other biopsies.

AI and other computational techniques are enabling patient samples to be rapidly analyzed and compared to data from vast numbers of individuals who have been treated for the same condition. Physicians can use AI and other tools to identify subtypes of cancers and other conditions, as well as improve selection of eligible candidates for clinical trials.

“I think we’ve gotten a lot better at precision diagnostics,” says Lukas Chavez, PhD, an assistant professor in the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys. “In my work at Rady Children’s Hospital in cancer, we can characterize a tumor based on mutations, including predicting how quickly different tumors will spread. What we too often lack, however, are better treatment approaches or medicines. That will be the next generation of precision medicine.”

Sanju Sinha, PhD, an assistant professor in the Cancer Molecular Therapeutics Program at Sanford Burnham Prebys, is developing projects to help bridge the gap between precision diagnostics and treatment. He is partnering with the National Cancer Institute on a first-of-its-kind computational tool to systematically predict patient response to cancer drugs at single-cell resolution.

A study published in the journal  Nature Cancer discussed how the tool, called PERCEPTION, was successfully validated by predicting the response to individual therapies and combination treatments in three independent published clinical trials for multiple myeloma, breast and lung cancer.

Lukas Chavez, PhD

Lukas Chavez, PhD, is an assistant professor in the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys.

In each case, PERCEPTION correctly stratified patients into responder and non-responder categories. In lung cancer, it even captured the development of drug resistance as the disease progressed, a notable discovery with great potential.

Sanju Sinha, PhD

Sanju Sinha, PhD, is an assistant professor in the Cancer Molecular
Therapeutics Program at Sanford Burnham Prebys.

“The ability to monitor the emergence of resistance is the most exciting part for me,” says Sinha. “It has the potential to allow us to adapt to the evolution of cancer cells and even modify our treatment strategy.”

While PERCEPTION is not yet ready for clinics, Sinha hopes that widespread adoption of this technology will generate more data, which can be used to further develop and refine the technology for use by health care providers.

In another project, Sinha is focused on patients being treated for potential cancers that may never progress into dangerous conditions warranting treatment and its accompanying side effects.

“Many women who are diagnosed with precancerous changes in the breast seek early treatment,” says Sinha. “Most precancerous cells never lead to cancer, so it may be that as many as eight of 10 women with this diagnosis are being overtreated, which is a huge issue.”

To try and counter this phenomenon, Sinha is training AI models on images of biopsied samples in conjunction with multi-omics sequencing data. His team’s goal is to develop a tool capable of predicting which patients’ cancers would progress based on the imaged samples alone.

“In the field of precancer, insurance does not cover the cost of computing this omics data,” says Sinha. “Health care systems do routinely generate histopathological slides from patient biopsies, so we feel that a tool leveraging these images could be a scalable and accessible solution.”

If Sinha’s team is successful, an AI tool integrated into clinics would predict whether precancerous cells would progress within the next 10 years to guide treatment decisions and how patients are monitored.

“With precision medicine, our hope is not to just treat patients with better drugs, but also to make sure that patients are not unnecessarily treated and made to bear needless costs and side effects that disrupt their quality of life.”


Programming in a Petri Dish, an 8-part series

How artificial intelligence, machine learning and emerging computational technologies are changing biomedical research and the future of health care

  • Part 1 – Using machines to personalize patient care. Artificial intelligence and other computational techniques are aiding scientists and physicians in their quest to prescribe or create treatments for individuals rather than populations.
  • Part 2 – Objective omics. Although the hypothesis is a core concept in science, unbiased omics methods may reduce attachments to incorrect hypotheses that can reduce impartiality and slow progress.
  • Part 3 – Coding clinic. Rapidly evolving computational tools may unlock vast archives of untapped clinical information—and help solve complex challenges confronting health care providers.
  • Part 4 – Scripting their own futures. At Sanford Burnham Prebys Graduate School of Biomedical Sciences, students embrace computational methods to enhance their research careers.
  • Part 5 – Dodging AI and computational biology dangers. Sanford Burnham Prebys scientists say that understanding the potential pitfalls of using AI and other computational tools to guide biomedical research helps maximize benefits while minimizing concerns.
  • Part 6 – Mapping the human body to better treat disease. Scientists synthesize supersized sets of biological and clinical data to make discoveries and find promising treatments.
  • Part 7 – Simulating science or science fiction? By harnessing artificial intelligence and modern computing, scientists are simulating more complex biological, clinical and public health phenomena to accelerate discovery.
  • Part 8 – Acceleration by automation. Increases in the scale and pace of research and drug discovery are being made possible by robotic automation of time-consuming tasks that must be repeated with exhaustive exactness.
Institute News

NIH director highlights Sanford Burnham Prebys and National Cancer Institute project to improve precision oncology

AuthorGreg Calhoun
Date

May 9, 2024

The NIH director’s blog features a recent publication detailing the study of a new AI tool that may be able to match cancer drugs more precisely to patients.

Monica M. Bertagnolli, MD, director of the National Institutes of Health (NIH), highlighted a collaboration between scientists at Sanford Burnham Prebys and the National Cancer Institute (NCI) on the NIH director’s blog. Bertagnoli noted advances that have been made in precision oncology approaches using a growing array of tests to uncover molecular or genetic profiles of tumors that can help guide treatments. She also recognizes that much more research is needed to realize the full potential of precision oncology.

The spotlighted Nature Cancer study demonstrates the potential to better predict how patients will respond to cancer drugs by using a new AI tool to analyze the sequences of the RNA within each cell of a tumor sample. Current precision oncology methods take an average of the DNA and RNA in all the cells in a tumor sample, which the research team hypothesized could hide certain subpopulations of cells—known as clones—that are more resistant to specific drugs.  

Bertagnoli said, “Interestingly, their research shows that having just one clone in a tumor that is resistant to a particular drug is enough to thwart a response to that drug. As a result, the clone with the worst response in a tumor will best explain a person’s overall treatment response.” 

More of Bertagnoli’s thoughts on this collaboration between scientists at Sanford Burnham Prebys and the NCI are available on the NIH director’s blog

Sanju Sinha, PhD, assistant professor in the Cancer Molecular Therapeutics Program at Sanford Burnham Prebys, is the first author on the featured study. 

Institute News

Media coverage of AI study predicting responses to cancer therapy ranks top 5% among published research

AuthorScott LaFee, Susan Gammon and Greg Calhoun
Date

April 29, 2024

Last week, Sanford Burnham Prebys and the National Cancer Institute shared findings regarding a first-of-its-kind computational tool to systematically predict patient response to cancer drugs at single-cell resolution.

Many news outlets and trade publications took note of this study and the computational tool’s potential future use in hospitals and clinics. This coverage placed the paper in the top 5% of all manuscripts ranked by Altmetric—a service that tracks and analyzes online attention of published research to improve the understanding and value of research and how it affects people and communities.

The results from the highlighted study were published on April 18, 2024, in the journal Nature Cancer.

“Our goal is to create a clinical tool that can predict the treatment response of individual cancer patients in a systematic, data-driven manner. We hope these findings spur more data and more such studies, sooner rather than later,” says first author Sanju Sinha, PhD, assistant professor in the Cancer Molecular Therapeutics Program at Sanford Burnham Prebys.

Here are a few of the venues that helped spread the word about this research: 

  • AP News: “Researchers … suggest that such single-cell RNA sequencing data could one day be used to help doctors more precisely match cancer patients with drugs that will be effective for their cancer.”
  • Politico, fourth story in Future Pulse newsletter: “Our hope is that being able to characterize the tumors on a single-cell resolution will enable us to treat and target potentially the most resistant and aggressive [cells], which are currently missed.”
  • NIH.gov: “The researchers discovered that if just one clone were resistant to a particular drug, the patient would not respond to that drug, even if all the other clones responded.”
  • Inside Precision Medicine: “The model was validated by predicting the response to monotherapy and combination treatment in three independent, recently published clinical trials for multiple myeloma, breast, and lung cancer.”

“I’m very pleased with how many news outlets covered our work,” Sinha says. “It is important and will help us continue improving the tool with more data so it can one day benefit cancer patients.”

Institute News

Ronai discusses new AI-supported breast cancer findings on Arabic-language TV

AuthorScott LaFee
Date

August 7, 2023

This month, researchers in Sweden published a study in The Lancet Oncology that compared the efficacy of artificial intelligence-supported mammogram screening versus the standard double reading by radiologists.

The researchers found in their randomized trial that AI-supported mammography screenings are safe, almost halved radiologists’ workload, and detected cancers that reviewing doctors missed.

Not surprisingly, the findings garnered international news coverage. Breast cancer is a global health threat, with more than 2.3 million women worldwide diagnosed each year and nearly 700,000 deaths.

Ze’ev Ronai, PhD, director of the Cancer Center at Sanford Burnham Prebys, was among experts interviewed by global media to provide context to the Swedish findings. He was interviewed on Alhurra, a U.S. government-owned Arabic-language satellite TV news channel that broadcasts internationally outside of the U.S.

You can watch the interview here. It’s in Arabic, but essentially Ronai said:

“This randomized trial of over 80,000 women offers an important advance for early detection of breast cancer, based on AI support of radiologist workload. AI will assist but not replace the role of radiologists in these assessments, and thus, is expected to enable radiologists to attend to more difficult cases. Caution from detections of less harmful lesions (which was one of the outcomes in this study), requires more training and careful validation. Overall, this is an important and safe advance in our quest for early detection of cancer, in this case, breast cancer.”

Institute News

Three big questions for cutting-edge biologist Will Wang

AuthorMiles Martin
Date

January 26, 2023

Will Wang’s spatial omics approach to studying neuromuscular diseases is unique.

He works at the intersection of biology and computer science to study how complex systems of cells interact, specifically focusing on the connections between nerves, muscles, and the immune response and their role in neuromuscular diseases.

We sat down with Wang, who recently joined the Institute as an assistant professor, to discuss his work and how computer technology is shaping the landscape of biomedical research.

How is your team taking advantage of computer technology to study neuromuscular diseases?

No cell exists in isolation. All our cells are organized into complex tissues with different types of cells interacting with each other. We study what happens at these points of interaction, such as where nerves connect to muscle cells. Combining many different types of data such as single cell sequencing, spatial proteomics, and measures of cell-cell signaling helps us get a more holistic look at how interactions between cells determine tissue function, as well as how these interactions are disrupted in injury and disease. Artificial neural networks help us make sense of these different types of data by finding patterns and insights the human brain can’t see on its own. And because computers can learn from the vast modality of data that we gather, we can also use them to help predict how biological systems will behave in the lab. The process goes both ways – from biology to computers and from computers to biology. 

How will these technologies shape the future of biomedical research?

Biology and computer programming are two different languages. There are a lot of mathematicians and programmers who are great at coming up with solutions to process data, but biological questions can get lost in translation and it’s easy to miss the bigger picture. And pure biologists don’t necessarily understand the full scope of what computers can do for them. If we’re going to get the most out of this technology in biomedical research, we need people with enough expertise in both areas that they can bridge the gap, which is what our lab is trying to do. Over time we’re going to see more and more labs that combine traditional biological experiments and data analysis approaches with artificial intelligence and machine learning. 

Are there any potential risks to these new technologies?

Artifical intelligence is here to accelerate discovery. Mundane tasks and measurements that took me weeks to carry out as a graduate student can be automated to a matter of minutes. We can now find patterns in high dimensional images that the human brain can’t easily visualize. However, any kind of artificial intelligence comes with a certain amount of risk if people don’t understand when and how to use the tools. If you just take the absolute word of the algorithm, there will inevitably be times where it’s not correct. As scientists, we use artificial intelligence as a cutting-edge discovery tool, but need to validate the findings in terms of the biology. At the end of the day, it is us, scientists, who are here to drive the discovery process and design real life experiments to make sure our therapies are safe and efficacious.