Research led by scientists at the Sanford Burnham Prebys Medical Discovery Institute (SBP) has identified a new regulator of immune responses. The study, published recently in Immunity, sheds new light on why T cells fail to clear chronic infections and eliminate tumors. The findings open the door for a new approach to modulating T cell responses in many clinical settings, including infections, autoimmune diseases, and tumors that are unresponsive to currently available therapies. Continue reading “Study reveals protein that dials immune responses up and down”
Tag: cancer
SBP’s Garth Powis talks about the search for a cure for cancer
More than 1.6 million Americans will be diagnosed with cancer this year alone. President Barack Obama announced a new national effort to find a cure for cancer in his 2016 State of the Union address. It is clear that providing hope to those diagnosed with cancer and their families is a huge priority.
The search is on for a new generation of cancer drugs, and Garth Powis D.Phil., head of the NCI-designated Cancer Center at SBP appeared the KUSI news in San Diego on January 22nd to talk about recent treatment breakthroughs and what’s to come for treating this often deadly disease.
Watch the video here.
Pedal the Cause donates $1.3 million for cancer research in San Diego
Sanford Burnham Prebys riders help raise much needed funds.
Continue reading “Pedal the Cause donates $1.3 million for cancer research in San Diego”
Scientists identify promising new melanoma drug
A new drug discovered by scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) may show promise for treating skin cancers that are resistant or unresponsive to today’s leading therapies.
In the United States, 5 million people are treated annually for skin cancer, and 9,000 people die from the deadliest form—melanoma—according to the US Department of Health and Human Services.
The new compound, named SBI-756, targets a specific molecular machine known as the translation initiation complex. These structures are in every cell and play the critical role of translating mRNA into proteins. In cancer cells the complex is impaired, producing extra protein and providing a growth advantage to tumors. SBI-756 causes the translation complex to dissociate, and was shown to inhibit melanoma cell growth in the study, published today in Cancer Research.
“The unique target of SBI-756 makes it especially promising for use in combination therapy,” said Ze’ev Ronai, senior author and scientific director of SBP’s La Jolla campus. “A major issue limiting the effectiveness of current melanoma therapies is that tumors become resistant to treatment. Combining drugs that come at a melanoma from different angles may help overcome the problem of drug resistance.”
About 50% of melanomas are caused by mutations in a specific gene called BRAF. Patients with these tumors are commonly prescribed vemurafenib, a BRAF inhibitor that shrinks tumors. However, many patients experience a relapse within weeks, months, or even years because tumors evolve and become resistant to the drug. A similar phenomenon is seen in mice, where treatment of BRAF melanomas results in an initial response, but 3-4 weeks later the tumors return.
The team found that if SBI-756 is co-administered with vemurafenib, the tumors disappeared and most importantly, they did not reoccur. Even in mice with advanced/late stage BRAF driven cancer, the reappearance of . These data suggests that SBI-756 provides a significant advantage in overcoming tumor resistance.
“The ability of this compound to delay or eliminate the formation of resistant melanomas is very exciting,” said Ronai.
In other forms of melanoma, caused by mutations in the genes NRAS and NF1—which are known as unresponsive to BRAF drugs—administering SBI-756 alone significantly the scientists found. The team is now testing whether combining SBI-756 with existing drugs used for treating these types of melanomas can make the tumors disappear.
Drugs that target the translation initiation complex have been intensely pursued in the past few years, not just for melanoma, but for a wide array of cancers. SBI-756 is considered a first-in-class drug because it is the first successful attempt to target a specific part of the complex called eIF4G1.
In fact, SBI-756 is the culmination of seven years of work in Ronai’s group—testing and tweaking the drug’s features to help it bind to the target more readily and to make it easier to formulate. The resulting compound is a significant improvement over the initial version.
“It appears that the dose we need to administer is very low. Even in the experiments where the drug was administered to mice with tumors over a significant period of time, we have not found any toxicity,” Ronai said.
“The finding of SBI-756 is also exciting for the possible treatment of diseases other than cancer, such as neurodegenerative diseases, where the activity of the translation initiation complex is reported to be higher,” said professor Nahum Sonenberg of McGill University, a world renowned leader in the field of protein translation.
“We hope that we’re going to come up with the next generation of the compound that can go into clinical trials—first in melanoma but likely in other tumors,” Ronai said.
The study was performed in collaboration with the Conrad Prebys Center for Chemical Genomics at SBP, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University (Canada), the National Cancer Institute, MD Anderson Cancer Center, and Yale University.
Newly discovered cell stress pathway could hold therapeutic promise for diverse diseases
This post was written by Janelle Weaver, PhD, a freelance writer.
When cells are faced with unfavorable environmental conditions, such as limited nutrient availability, the activation of adaptive stress responses can help protect them against damage or death. For example, stressed cells can maintain sufficient energy levels for survival by degrading and recycling unnecessary or dysfunctional cellular components. This survival mechanism, known as autophagy (literally, ‘self-digestion’), also plays key roles in a variety of biological processes such as development and aging, and is often perturbed in various diseases. Even though tight control of autophagy is key to survival, relatively little is known about the signaling molecules that regulate this essential process. Continue reading “Newly discovered cell stress pathway could hold therapeutic promise for diverse diseases”
Join us for the second cancer center open house – November 6
Sanford-Burnham’s NCI-Designated Cancer Center and the Cancer Center’s Community Advisory Board will host the second annual Cancer Center open house for cancer survivors, their families and friends, and research advocates on November 6 at 4:30 p.m. in La Jolla, Calif. Continue reading “Join us for the second cancer center open house – November 6”
From the American Association for Cancer Research—what you should know about cancer in 2014
The American Association for Cancer Research (AACR) has released its 2014 Progress Report. This is the fourth report that chronicles the progress that has been made against cancer, describes how the NIH and NCI are transforming lives by funding research, and highlights new approaches to achieve better outcomes for patients. Continue reading “From the American Association for Cancer Research—what you should know about cancer in 2014”