cancer Archives - Page 4 of 11 - Sanford Burnham Prebys
Institute News

Advocates for our Cancer Center ensure patient perspective is understood in the lab

AuthorJosh Baxt
Date

August 20, 2021

Helen Eckmann and Ruth Claire Black share a common history with breast cancer and a drive to serve their community.

Ruth Claire Black and Helen Eckmann are sisters from different parents. They both have doctorates, work as professors and volunteer for Sanford Burnham Prebys’ Cancer Advisory Board (CAB).

Black and Eckman are incurable optimists and are both thriving after breast cancer. They want other cancer survivors to feel the same way.

“One of the messages we like to deliver is that you can live an amazing, vibrant, positive, productive, fully engaged-in-your-community life,” says Black, “even after fully metastasized, stage 4 breast cancer.”
 

Parallel journeys

Black knew all along that she was going to face breast cancer. Both her grandmother and mother died from the disease when they were in their 50s. That shoe dropped for her, as expected, around her 50th birthday.

“I got my diagnosis on a Thursday before a long Memorial Day weekend,” says Black. “I kept calling in, getting the switchboard and becoming increasingly anxious. But I was lucky. I had people I could call to talk me off the ledge.”

One of her impromptu counselors was Helen Eckmann.

Eckmann was initially diagnosed when she was 42, the first of three bouts with the disease. Following an inconclusive mammogram, Eckmann was instructed to come back in six months, but a sudden epiphany brought her back sooner.

“I was putting on a pair of shoes, and I think God spoke to me and said, ‘Go now!’” says Eckmann. “I told the doctor I wanted a needle biopsy to figure out whether it was actually cancer. They told me not to worry about it, to wait the full six months, but I insisted. At that point, the cancer had already moved into my lymph system.”

That was just the beginning of her long journey, including multiple rounds of chemotherapy and surgery. “About six years ago, I was going up the stairs, and my right femur broke,” says Eckmann. “The cancer had gone to my bones.”
 

From Experience to Advocacy

Eckmann and Black were knocked down repeatedly by breast cancer, but they kept getting back up. During these treatment odysseys, each developed a profound ability to see the disconnects in the system: the oncologists who wouldn’t take their intuition seriously (but soon learned better); the insurance companies that seemed to make random coverage decisions; the difficulty finding timely, accurate information.

“I’m a lawyer, a professor and I’ve worked a lot as a consultant,” says Black. “But even with that background, I didn’t know what I needed to know to successfully move through treatment. I think that’s a common theme.”

Both wanted to find productive ways to give back. Eckmann was one of the earliest members of the Sanford Burnham Prebys’ NCI-designated Cancer Center’s Community Advisory Board, which includes cancer survivors and family members who’ve supported a loved one through treatment. She recalls her conversation, many years ago, with President Kristiina Vuori, MD, PhD, who was the Cancer Center director at the time.

“I told her I wanted to help, and she leaned across the desk and practically hugged me,” said Eckmann. “She said she was going to put me to work, and she did.”

Black joined a few years later. Together with seven fellow CAB members, they organize public events to educate the community about cancer research, teach scientists how to communicate their work to lay audiences and help principal investigators with their grant applications.

“Part of the Department of Defense’s (DOD’s) Breast Cancer Research Program grant assessment process is measuring community support for the research,” says Black. “We act as advocates, providing support letters and making sure the patient experience is understood in the lab.”

This is no small piece. Dedicated lab scientists spend much of their time conducting research. And while this often gives them great insights into cancer biology, and possible interventions, it can also create blind spots.

Helen Eckmann and Ruth Claire Black sit and talk at a kitchen table

“One time I was at a lab meeting, and they were talking about an experiment that would require patients to give blood samples every month or so,” says Black. “But that’s a high burden to place on people who may not have an extra two hours in their schedule. The lab’s focus was on how to collect these biomarkers sequentially over time, but they hadn’t really thought about the patients. This was a new perspective for them, and they were really open to it.”

Both Eckmann and Black have steadily elevated their game and are now part of the DOD’s Consumer Review Program, in which they rate grant proposals for their potential impact on patients. Eckmann has also joined NCI Cancer Center accreditation visits, and Black is on the Food & Drug Administration’s National Mammography Quality Assurance Advisory Committee.

All these efforts are driven by their concerns for fellow cancer patients and survivors. They clearly remember those early days, soon after diagnosis, when they didn’t understand their roles as patients, insisted on working and keeping their normal hectic schedules and tried to pretend that nothing was wrong.

Over time, they learned that cancer treatment is a marathon, and that it’s easy for people to waste tremendous energy on issues beyond their control until they have nothing left in the tank. However, they also want their peers to know that, yes, a cancer diagnosis is horrific, but it will help people find resilience they never knew they had.

“The journey will make you stronger for sure, whether you want to be stronger or not.”

Ruth Claire Black
Institute News

Conrad Prebys Foundation provides $3 million for pediatric brain cancer research

AuthorSusan Gammon
Date

April 7, 2021

Conrad Prebys was an extraordinary man and a passionate philanthropist. Today, his generosity extends beyond his life through the Conrad Prebys Foundation.

This year, the Foundation provided $3 million to Robert Wechsler-Reya, PhD, and his team of researchers to advance a potential drug to treat medulloblastoma—the most common malignant brain tumor in children.

Children with medulloblastoma often receive aggressive treatment (surgery, radiation and chemotherapy), but many still die of their disease, and survivors suffer long-term effects from therapy. Safer and more effective therapies are desperately needed.

Wechsler-Reya recently combined forces with Michael Jackson, PhD, senior vice president of Drug Discovery and Development, to find a drug(s) that would inhibit the growth of Group 3 medulloblastoma, the most aggressive form of the disease. Using high-throughput screening technology, they identified a compound that reduces levels of a protein called MYC, which is found at exceptionally high levels in Group 3 medulloblastoma, as well as in cancers of the blood, breast, lung and prostate.

“An effective MYC inhibitor could have a major impact on the survival and quality of life of patients with medulloblastoma,” says Wechsler-Reya. “We identified a compound that reduces levels of MYC in medulloblastoma cells, but now we need to learn how it works to optimize it as an anti-cancer drug and advance studies toward the clinic.

“Historically, pharmaceutical companies and funding agencies have under-invested in childhood cancers, and the majority of drugs currently used to treat these cancers were originally developed for adult cancer,” adds Wechsler-Reya. “We believe that effective drugs for pediatric brain tumors must be developed—and this award from the Foundation will help us achieve this goal.”

“We are profoundly grateful to Conrad for his generosity over the years,” says President Kristiina Vuori, MD, PhD “He has a special legacy at our Institute, which was renamed Sanford Burnham Prebys in 2015 to honor him. We are now thankful to his Foundation for including us in their inaugural grant cycle, and for supporting the critical work we do to benefit children and others suffering from cancer.”

The Conrad Prebys Foundation allocated $78 million in its inaugural grant cycle to fund 121 projects. The awards reflect areas of personal interest to Conrad Prebys—including visual and performing arts, higher education, health care, youth development and animal conservation.

Sanford Burnham Prebys joins a long list of recipients, which included other prominent San Diego institutions such as Rady Children’s Hospital, KPBS, San Diego State University, Scripps Research, Museum of Contemporary Art San Diego and the La Jolla Music Society.

Institute News

Scientists design potential drug for triple-negative breast cancer

AuthorMonica May
Date

February 16, 2021

Drug candidate blocks autophagy, a cellular recycling process that cancer cells hijack as a way to resist treatment

Scientists at Sanford Burnham Prebys Medical Discovery Institute have designed a next-generation drug, called SBP-7455, which holds promise as a treatment for triple-negative breast cancer—an aggressive cancer with limited treatment options. The drug blocks a cellular recycling process called autophagy, which cancer cells hijack as a way to resist treatment. The proof-of-concept study was published in the Journal of Medicinal Chemistry.

“Scientists are now learning that autophagy is one of the main ways that cancer cells are able to survive, even in the presence of growth-blocking treatments,” says Huiyu Ren, a graduate student in the laboratory of Nicholas Cosford, PhD, at Sanford Burnham Prebys, and first author of the study. “If all goes well, we hope this compound will stop cancer cells from turning on autophagy and allow people with triple-negative breast cancer to benefit from their treatment for as long as possible.”

Cells normally use autophagy as a way to recycle waste products. However, when cancer cells’ survival is threatened by a growth-blocking treatment, this process is often “revved up” so the cancer cell can continue to receive nutrients and keep growing. Certain cancers are more likely to rely on the autophagy process for survival, including breast, pancreatic, prostate and lung cancers.

“While this study focused on triple-negative breast cancer, an area of great unmet need, we are actively testing this drug’s potential against more cancer types,” says Cosford, professor and deputy director in the National Cancer Institute (NCI)-designated Cancer Center at Sanford Burnham Prebys and senior author of the study. “An autophagy-inhibiting drug that stops treatment resistance from taking hold would be a great addition to an oncologist’s toolbox.”

About 15% to 20% of all breast cancers are triple negative, which means they do not respond to hormonal therapy or targeted treatments. The cancer is currently treated with surgery, chemotherapy and radiation, and is deadlier than other breast cancer types. If the tumor returns, other treatments such as PARP inhibitors or immunotherapy are considered. People under the age of 50 are more likely to have triple-negative breast cancer, as well as women who are Black, Hispanic, and/or have an inherited BRCA mutation.

An optimized drug

In this study, the scientists optimized a first-generation drug they created in 2015. The result is a compound called SBP-7455 that blocks two autophagy proteins, ULK1 and ULK2. SBP-7455 exhibits promising bioavailability in mice and reduces autophagy levels in triple-negative breast cancer cells, resulting in cell death. Importantly, combining the drug with PARP inhibitors, which are currently used to treat people with recurrent triple-negative breast cancer, makes the drug even more effective.

“We are hopeful that we have found a new potential therapy for people living with triple-negative breast cancer,” says Reuben Shaw, PhD, a study author and professor in the Molecular and Cell Biology Laboratory and director of the NCI-designated Cancer Center at the Salk Institute. “We envision this drug being used in combination with targeted therapies, such as PARP inhibitors, to prevent cancer cells from becoming treatment resistant.”

Next, the scientists plan to test the drug in mouse models of triple-negative breast cancer to confirm that the compound can stop tumor growth in an animal model. In parallel, they will continue optimization efforts to ensure the drug has the greatest chance of clinical success.

“Triple-negative breast cancer is one of the hardest cancers to treat today,” says Ren. “I hope that our research marks the start of a path to successful treatment that helps more people survive this aggressive cancer.”


Additional study authors include Nicole A. Bakas, Mitchell Vamos, Allison S. Limpert, Carina D. Wimer, Lester J. Lambert, Lutz Tautz, Maria Celeridad and Douglas J. Sheffler of Sanford Burnham Prebys; Apirat Chaikuad and Stefan Knapp of the Buchmann Institute for Molecular Life Sciences and Goethe-University Frankfurt; and Sonja N. Brun of the Salk Institute.

This work was supported by the National Institutes of Health (P30CA030199, T32CA211036), Epstein Family Foundation, Larry L. Hillblom Foundation (2019-A-005-NET), Pancreatic Cancer Action Network (19-65-COSF), SGC—a registered charity that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-196], EU/EFPIA/OICR/McGill/KTH/Diamond, Innovative Medicines Initiative 2 Joint Undertaking (875510), Janssen, Merck KGaA, Merck & Co, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome.

The study’s DOI is 0.1021/acs.jmedchem.0c00873.

Institute News

Meet immunologist Jennifer Hope

AuthorMonica May
Date

February 12, 2021

Hope’s research aims to help cancer immunotherapy work for more people

It’s not an overstatement to say that immunotherapy—an approach that uses our own immune system to kill a tumor—has revolutionized the treatment of cancer. Doctors continue to report incredible results, including tough-to-treat tumors seemingly melting away. However, the treatment doesn’t work for everyone, and even if it does work initially, it often stops working as time goes on.  

Jennifer Hope, PhD, a postdoctoral researcher in the Bradley lab at Sanford Burnham Prebys, is working to find ways to make cancer immunotherapy work for more people. We caught up with her as she prepared to take the virtual stage at the Diversity and Science Lecture Series at UC San Diego (DASL) to learn more about what she wishes people knew about science and whom she admires.

Did you always know you wanted to be a scientist?
I always had an interest in science, but at first I wanted to go a totally different route. I was an athlete in high school and college—I played tennis—and really wanted to go into sports medicine. Then I had my first real experience being in a lab in college, and I was hooked. I liked how hands-on it was and how I could keep asking questions. As my family knows, I’ve always been one to ask a lot of questions and always ask why. I found that being in the lab that was my opportunity to keep coming up with new questions, and finding answers that will impact people’s lives.

What do you research, and what is your greatest hope for your work?
I’m trying to understand why the immune system—specifically, T cells—seems to turn a “blind eye” to tumors, which it doesn’t do to other foreign invaders like viruses. My ultimate hope is that we use this information to create better cancer immunotherapies, particularly for skin cancer, which is still really deadly.

What do you wish people knew about science?
That it can be a lot of fun! Most people have this perception of science as being very boring. You see X and you do Y. That part can be true. But there’s a lot of opportunity for creativity and to come up with different ways to ask the same question. Some of the best scientists are incredibly creative people.

How would your coworkers describe you?
Motivated and always willing to try new things.

When you aren’t working, where can you be found?
Reading a book. My family started a book club to stay connected during the pandemic. We just read The Food Explorer by Daniel Evan Stone, which was fascinating. It’s about a botanist who is responsible for transforming what food looked like in the U.S. at the turn of the century. I don’t want to give too much away, but it’s because of him that we have cherry blossoms in Washington D.C., and regulations on importing seeds.

Whom do you admire, and why?
My parents. It sounds cliché, but it’s true. They have always been the biggest supporters of my dreams, whether career or personal.

One example that pops into my head is when I was getting my PhD, and my PI moved from Philadelphia to the Netherlands. I had the opportunity to move, too, if I wished. This was obviously a huge step, and I called my parents to talk it through. Immediately, the conversation was about how this would benefit me—the risks and the advantages—and they said they would support me if I wanted to go or not. That meant, and means, the world to me. Ultimately, I did go, and it was an incredible opportunity that I don’t regret at all.

What do you wish people knew about Sanford Burnham Prebys?
That everyone is willing to help each other. You don’t see that everywhere. It is proof that you can do science at an exceptional level without competing with each other.

Institute News

Mining “junk DNA” reveals a new way to kill cancer cells

AuthorMonica May
Date

February 11, 2021

Scientists unearth a previously unknown vulnerability for cancer and a promising drug candidate that leverages the approach

Scientists at Sanford Burnham Prebys have uncovered a drug candidate, called F5446, that exposes ancient viruses buried in “junk DNA” to selectively kill cancer cells. Published in the journal Cell, the proof-of-concept study reveals a previously unknown Achilles’ heel for cancer that could lead to treatments for deadly breast, brain, colon and lung cancers.

“We found within ‘junk DNA’ a mechanism to stimulate an immune response to cancer cells, while also causing tumor-specific DNA damage and cell death,” says Charles Spruck, PhD, assistant professor in the National Cancer Institute (NCI)-designated Cancer Center and senior author of the study. “This is a very new field of research, with only a handful of papers published, but this has the potential to be a game-changer in terms of how we treat cancer.”

Since the human genome was fully sequenced in 2003, scientists have learned that our DNA is filled with some very strange stuff—including mysterious, noncoding regions dubbed “junk DNA.” These regions are silenced for a reason—they contain the genomes of ancient viruses and other destabilizing elements. An emerging area of cancer research called “viral mimicry” aims to activate these noncoding regions and expose the ancient viruses to make it appear that a cancer cell is infected. The hypothesis is that the immune system will then be triggered to destroy the tumor.

A one-two punch to cancer

In the study, Spruck and his team set out to find the molecular machinery that silences “junk DNA” in cancer cells. Using sophisticated molecular biology techniques, they found that a protein called FBXO44 is key to this process. Blocking this protein caused the noncoding sections of DNA to unwind—but not for long.

“When we revealed noncoding regions, which aren’t meant to be expressed, this caused DNA breakage. This told the cell that something is deeply wrong, and it committed suicide,” explains Spruck. “At the same time, the DNA of the ancient virus was exposed, so the immune system was recruited to the area and caused more cell death. So, we really delivered a one-two punch to cancer.”

The scientists then showed that a drug that targets the FBXO44 pathway, called F5446, shrank tumors in mice with breast cancer. The drug also improved the survival of mice with breast cancer that were resistant to anti-PD-1 treatment, an immunotherapy that is highly effective but often stops working over time. Additional studies in cells grown in a lab dish showed that the drug stops the growth of other tumors, including brain, colon and lung cancers.

The scientists also conducted many experiments to show that this silencing mechanism only occurs in cancer cells, not regular cells. Analysis of patient tumor databases confirmed that FBXO44 is overproduced in many cancers and correlated with worse outcomes—further indicating that a drug that inhibits this protein would be beneficial.

Moving the research toward people

As a next step, the scientists are working with the Conrad Prebys Center for Chemical Genomics to design an FBXO44 pathway-inhibiting drug that is more potent and selective than F5446. This state-of-the-art drug discovery facility is located at Sanford Burnham Prebys.

“Now that we have a compound that works, medicinal chemists can make modifications to the drug so we have a greater chance of success when we test it in people,” says Jia Zack Shen, PhD, staff scientist at Sanford Burnham Prebys and co-first author of the study. “Our greatest hope is that this approach will be a safe and effective pan-cancer drug, which maybe one day could even replace toxic chemotherapy.”

 

Institute News

Meet cancer researcher Karina Barbosa Guerra

AuthorMonica May
Date

February 3, 2021

Barbosa Guerra is working to find better treatments for a deadly leukemia

For Karina Barbosa Guerra, touring a lab and meeting scientists as part of her Girl Guides troop—Mexico’s equivalent of the Girl Scouts—was a life-changing experience. Suddenly, she could see herself as a scientist.

Today, Barbosa Guerra is a graduate student in the Deshpande lab at Sanford Burnham Prebys, where she’s working to find better treatments for a blood cancer called acute myeloid leukemia (AML). We caught up with Barbosa Guerra as she prepares to take the virtual stage at the Diversity and Science Lecture Series at UC San Diego (DASL) to learn more about when she decided she wanted to be a scientist and where she can be found when not in the lab.

Tell us about the moment you realized you wanted to be a scientist.
According to my mother, I stated that I wanted to become a chemist to develop vaccines when I was ten years old. However, it wasn’t until middle school that I started cultivating my own sense of scientific curiosity. At that time, I was in a Girl Scouts program centered on HIV/AIDS peer education, so I began to read a bit more about viruses. It was incredibly amazing that they could linger undetected in our bodies—and that many questions about their biology remained unanswered. The more I learned, the less I felt I knew, and I wanted to follow that endless string of questions.

What do you study, and what is your greatest hope for your research?
I study a cancer called acute myeloid leukemia—specifically, subtypes that are hard to treat. Certain cancer cells, like stem cells, are pretty resilient and can self-renew. This enables them to resist therapy, so we want to discover better ways to target this particular feature. My research aims to find ways in which we can treat these leukemias based on their stem cell–like capabilities. My hope is that we can ultimately benefit the patients enduring harsh treatments and disease relapse, and along the way, illuminate the fascinating aspects of the biology behind effective treatments.

What do you wish people knew about science?
That it’s a team effort. The current coronavirus pandemic has really shown us that collaboration is at the heart of transformative science. I think that great ideas are best developed through discussion—and the thrill of putting the pieces together is way more enjoyable with company.

How do you think your lab colleagues would describe you?
Maybe as the girl with a bunch of notebooks. I like to make notes of everything. My notebooks are way more reliable than my memory.

What is the best career advice you’ve ever received?
Early in the graduate program, one of my mentors told me, “Be there,” meaning that I had to spend time with my science. If I were to discover something or make a great insight, I had to be there to do it, think it or see it.

What do you wish people knew about Sanford Burnham Prebys?
That this is such a welcoming community. I felt this the very first time I visited the campus, and I feel so at home here as a student. There are plenty of opportunities to engage with others and help each other out. I really enjoy the collaborative spirit of our little community.

Learn more about the Institute’s Graduate School of Biomedical Sciences.

Institute News

Scientists uncover protein that empowers antibodies

AuthorMonica May
Date

January 11, 2021

Discovery may lead to better vaccine strategies and improve treatments for cancer and autoimmune disorders

Antibodies are the heroes of our immune system. They protect us from viruses, like SARS-CoV-2 (which can lead to COVID-19), as well as bacteria and other pathogens. They can provide lifelong protection from future infections—if they are strong enough. But, like any hero, they are fallible, and certain cancers or autoimmune disorders can arise when things go wrong.

Now, Sanford Burnham Prebys scientists have revealed that a protein called cyclin D3 tells antibody-producing B cells to start dividing—opening new research avenues that could improve vaccine development or the treatment of B cell lymphoma and autoimmune disorders. The discovery was published in Cell Reports.

Antibodies get their power from a complicated process. When an “intruder” is detected in the body, B cells—which produce antibodies—are activated. Each B cell is unique—they contain slight genetic variations to produce a diverse set of antibodies to attack the “intruder.” Later, they undergo optimization through a “survival of the fittest” process to identify the most protective versions.

“Our findings reveal that cyclin D3 is the ‘go’ signal for B cells to start rapidly dividing and producing a set of diverse antibodies,” says Parham Ramezani-Rad, PhD, a postdoctoral researcher in the Tumor Microenvironment and Cancer Immunology Program at Sanford Burnham Prebys and the lead author of the study. “This information might help scientists create better vaccine strategies in the future. On the flip side, researchers may be able to develop better weapons against B cell lymphoma and autoimmune disorders by removing malignant B cells.”

Parham Ramezani-Rad, PhD

​Parham Ramezani-Rad, a postdoctoral researcher at Sanford Burnham Prebys and lead author of the study.

Diving into the “dark zone”

After infection, B cells grow and divide in special structures called germinal centers that form in our spleen and lymph nodes. In this structure, a “dark zone”—referring to what scientists saw under the microscope in the 1930s—and a “light zone” are visible. Now researchers know the dark zone is where B cells are rapidly expanding, and this cell density appeared darker in the original microscope studies. After proliferating in the dark zone, B cells head to the light zone where the best potential antibody options are selected—while less desirable options are eliminated.

Cell Reports cover

Parham Ramezani-Rad designed the image that was featured on the cover of Cell Reports. The image is an artistic impression of the dynamics occurring inside of the germinal center, where antibody-producing B cells undergo a “survival of the fittest” selection process.

​Ramezani-Rad made the discovery when studying B cell lymphoma, a blood cancer that often contains a mutation that leads to hyper-stable cyclin D3. Using mice and sophisticated CRISPR gene editing technology, he discovered that cyclin D3 regulates the expansion or contraction of B cells specifically in the dark zone of germinal centers—and not the light zone. He also identified other regulatory aspects involved in this process that scientists might be able to harness for the benefit of human health.

“B cell lymphoma is often treated with an intensive chemo and immunotherapy combination. The side effects of this treatment can be immense, and relapses may occur,” says Ramezani-Rad. “Our findings about cyclin D3 could form the basis for a more tailored medicine that targets exactly what goes wrong during B cell lymphoma, and is potentially less toxic and more effective.”

Ramezani-Rad also designed the image that was selected for the journal cover, which is his artistic impression of the dynamics occurring inside the germinal center. He finds many parallels between scientists and artists.

“As a scientist, I see myself describing what already exists in nature,” explains Ramezani-Rad. “Musicians and painters are also describing the world. They are just using instruments or paint strokes to express emotions, whereas scientists use data to express knowledge.”

Institute News

Our top 10 discoveries of 2020

AuthorMonica May
Date

December 14, 2020

This year required dedication, patience and perseverance as we all adjusted to a new normal—and we’re proud that our scientists more than rose to the occasion.

Despite the challenges presented by staggered-shift work and remote communications, our researchers continued to produce scientific insights that lay the foundation for achieving cures.

Read on to learn more about our top 10 discoveries of the year—which includes progress in the fight against COVID-19, insights into treating deadly cancers, research that may help children born with a rare condition, and more.

  1. Nature study identifies 21 existing drugs that could treat COVID-19

    Sumit Chanda, PhD, and his team screened one of the world’s largest drug collections to find compounds that can stop the replication of SARS-CoV-2. This heroic effort was documented by the New York Times, the New York Times Magazine, TIME, NPR and additional outlets—and his team continues to work around the clock to advance these potential treatment options for COVID-19 patients.

  2. Fruit flies reveal new insights into space travel’s effect on the heart

    Wife-and-husband team Karen Ocorr, PhD, and Rolf Bodmer, PhD, shared insights that hold implications for NASA’s plan to build a moon colony by 2024 and send astronauts to Mars.

  3. Personalized drug screens could guide treatment for children with brain cancer

    Robert Wechsler-Reya, PhD, and Jessica Rusert, PhD, demonstrated the power of personalized drug screens for medulloblastoma, the most common malignant brain cancer in children.

  4. Preventing pancreatic cancer metastasis by keeping cells “sheltered in place”

    Cosimo Commisso, PhD, identified druggable targets that hold promise as treatments that stop pancreatic cancer’s deadly spread.

  5. Prebiotics help mice fight melanoma by activating anti-tumor immunity

    Ze’ev Ronai, PhD, showed that two prebiotics, mucin and inulin, slowed the growth of melanoma in mice by boosting the immune system’s ability to fight cancer.

  6. New test for rare disease identifies children who may benefit from a simple supplement

    Hudson Freeze, PhD, helped create a test that determines which children with CAD deficiency—a rare metabolic disease—are likely to benefit from receiving a nutritional supplement that has dramatically improved the lives of other children with the condition.

  7. Drug guides stem cells to desired location, improving their ability to heal

    Evan Snyder, MD, PhD, created the first drug that can lure stem cells to damaged tissue and improve treatment efficacy—a major advance for regenerative medicine.

  8. Scientists identify a new drug target for dry age-related macular degeneration (AMD)

    Francesca Marassi, PhD, showed that the blood protein vitronectin is a promising drug target for dry age-related macular degeneration (AMD), a leading cause of vision loss in Americans 60 years of age and older.

  9. Scientists uncover a novel approach to treating Duchenne muscular dystrophy

    Pier Lorenzo Puri, MD, PhD, collaborated with scientists at Fondazione Santa Lucia IRCCS and Università Cattolica del Sacro Cuore in Rome to show that pharmacological (drug) correction of the content of extracellular vesicles released within dystrophic muscles can restore their ability to regenerate muscle and prevent muscle scarring.

  10. New drug candidate reawakens sleeping HIV in the hopes of a functional cure

    Sumit Chanda, PhD, Nicholas Cosford, PhD, and Lars Pache, PhD, created a next-generation drug called Ciapavir (SBI-0953294) that is effective at reactivating dormant human immunodeficiency virus (HIV)—an approach called “shock and kill.”

Institute News

Meet neuroscientist Paloma Sánchez Pavón

AuthorMonica May
Date

October 7, 2020

Paloma’s research aims to protect premature babies from brain damage

Newborns have a new scientist in their corner: Paloma Sánchez Pavón, a graduate student in the lab of Jerold Chun, MD, PhD Paloma is working to find a medicine that could protect the still-developing brains of premature babies, which are incredibly delicate and prone to swelling. Called hydrocephalus, the condition is common—affecting one in 1,000 newborns—and repeated brain surgery is the only treatment.

We caught up with Paloma to learn more about what makes her tick, including why she decided to become a scientist and what she wishes people knew about research.

  • Did you always know you wanted to be a scientist? When you were a child, did you ever imagine you would be in the role you are today?
    I always knew I wanted to become a scientist, but I didn’t imagine I would be in the position I am today. Growing up, I was obsessed with the idea of becoming a marine biologist. I was fascinated by how much we didn’t know about the ocean. My plan was to move closer to the beach and enroll in a program that would allow me to learn more about it. Nevertheless, I soon realized that I was both mesmerized and terrified of the ocean (sharks, especially), and that I would never be able to spend enough time diving and exploring the water, which is what such a career would require. I was still passionate about biology and science in general, so I decided to study the most unknown (and equally unexplored) organ in the human body—the brain.
  • What do you study, and what is your greatest hope for your research?

    I study hydrocephalus, a condition that often affects premature infants. These newborns are extremely fragile and often accumulate fluid in their heads, which can cause brain damage or death. The only treatment is invasive brain surgery, required multiple times throughout individuals’ lives, to insert a shunt in their brains and drain the excess fluid so it is reabsorbed somewhere else in the body. This procedure is extremely uncomfortable for the patients and, like any other surgery, is associated with several risks that endanger their lives. I’m trying to understand the disease so we can find a better, less invasive treatment.

Paloma Sánchez Pavón at the beach in front of the ocean at sunset

When Paloma isn’t working in the lab, she can be found enjoying one of San Diego’s many beautiful beaches

  • What is one scientific question you wish you had an absolutely true answer to?
    To answer this question, I will step away from biology and turn to the universe. What is there beyond our galaxy? Will we be able to inhabit other planets? If we have so many things to still learn about the ocean and the brain, the universe is in a completely different category, with so many possibilities ahead of us.
  • What do you wish people knew about science?
    That it is fun. Experiments are about testing limits and going beyond what is known. I think that is really exciting. Also, science advances because we’re constantly asking new questions. Curiosity is what keeps this field in continuous evolution. And never be afraid to ask questions because science can be understood by everybody—it just needs to be explained well.
  • When you aren’t working in the lab, where can you be found? Where is your happy place?
    You will find me at the beach, walking along it or watching a sunset. One of the main reasons why I decided to move to San Diego is because I fell in love with its sunsets. You will also find me having brunch (my favorite American tradition) with my friends or enjoying a beer after work with them, especially around Encinitas or downtown San Diego.
  • What is the best career advice you have ever received?
    Never stop pushing the boundaries of knowledge. A curious mind is what keeps a scientist passionate about their job. Experiments usually don’t work the first time. You have to keep asking new questions and learning from your mistakes. Finishing a project takes time, but every day is unexpected and exciting because you don’t know what you’re going to find. That is the thrilling part about being a scientist.
  • What do you wish people knew about Sanford Burnham Prebys?
    What a great community Sanford Burnham Prebys is. I’ve never been in such a collaborative environment, where you work closely not only with students and postdocs, but also with faculty members. Everyone is always willing to help, whether that is lending reagents or advising about different techniques. As a student, this is what I value the most because it helps me develop as a scientist in an extremely enriching way.

Learn more about our Graduate School of Biomedical Sciences.

Institute News

Scientists “turn back time” on cancer using new stem cell reprogramming technique

AuthorMonica May
Date

August 21, 2020

Discovery opens new research avenues that may help catch cancer early and identify potential preventive treatments

Scientists at Sanford Burnham Prebys Medical Discovery Institute have reprogrammed cancer cells back into their pre-cancer identity—opening new doors for studying how cancer develops and how it might be prevented. The research, published in Stem Cell Reports, may lead to tests that identify cancer early on, when it can be more easily treated, and uncover preventive treatments that stop cancer before it starts.

“We believe we have been able to contribute to one of the major goals of modern cancer research: creating next-generation models for studying how cancer develops from its earliest state,” says Evan Snyder, MD PhD, professor and director of the Center for Stem Cells & Regenerative Medicine at Sanford Burnham Prebys and senior author of the study. “We essentially took an adult cancer that has accumulated many mutations and pushed it back to the earliest stages of development, allowing us to emulate a tumor’s premalignant state. Then we watched cancer emerge from normal cells before our eyes.”

Turning back the clock on cancer 

In the study, the scientists set out to transform cells from anaplastic thyroid tumors—an aggressive, fast-growing cancer that is nearly always diagnosed at late stages—into induced pluripotent stem cells (iPSCs). These cells model the embryonic cells that are present at the earliest stages of human development and can become any cell in the body. While iPSCs are used today to create unlimited supplies of cells for research and therapeutic purposes—usually to correct abnormalities—the scientists recognized that tumor-derived iPSCs could be used to study the development of cancer.

However, this feat turned out to be easier said than done. The standard reprogramming method didn’t work, requiring the researchers to hunt for a different method that would induce the cancer cells to reset. Inhibiting a protein called RAS was the key ingredient that coaxed these thyroid cancer cells to become normal iPSC cells.

“We have named the pathway that is critical for making a cancer cell act as if it were a normal cell its ‘reprogram enablement factor,’” explains Snyder. “That factor will likely be different for every cancer and, in fact, may help in defining that cancer type.

“For this cancer type, which we examined in our study as a proof-of-concept, the reprogram enablement factor turned out to be blunting an overactive RAS pathway,” Snyder continues. “Our results suggest that losing control of RAS was the ‘big bang’ for this cancer—the very first event that leads to out-of-control cell growth and development of a tumor.”

The scientists next plan to reprogram additional cancers—including brain and lung cancer—into iPSCs to determine their “reprogram enablement factors.” If successful, they will next map the molecular changes that occur immediately before and after the tumors develop, which could reveal early signals of cancer and new preventive or early treatment measures.

“Unlike other cells, cancer cells are notoriously resistant to reprogramming,” says Snyder. “Our study is the first to successfully reprogram cancer cells into completely normal iPSCs, which opens new doors for cancer research.”

A team effort

The first author of the study is Yanjun Kong of Sanford Burnham Prebys and Shanghai Jiao Tong University. Yang Liu of Sanford Burnham Prebys is a co-corresponding author. Additional study authors include Ryan C. Gimple of UC San Diego; Rachael N. McVicar, Andrew P. Hodges and Jun Yin of Sanford Burnham Prebys; and Weiwei Zhan of Shanghai Jiao Tong University.

This study was funded by the Stem Cell Research Center & Core Facility at Sanford Burnham Prebys and by the China Scholarship Council (201606230202). The study’s DOI is 10.1016/j.stemcr.2020.07.016.