pediatric cancer Archives - Sanford Burnham Prebys
Institute News

Coding clinic

AuthorGreg Calhoun
Date

August 6, 2024

Rapidly evolving computational tools may unlock vast archives of untapped clinical information—and help solve complex challenges confronting healthcare providers

The wealth of data stored in electronic medical records has long been considered a veritable treasure trove for scientists able to properly plumb its depths.  

Emerging computational techniques and data management technologies are making this more possible, while also addressing complicated clinical research challenges, such as optimizing the design of clinical trials and quickly matching eligible patients most likely to benefit.  

Scientists are also using new methods to find meaning in previously published studies and creating even larger, more accessible datasets.  

“While we are deep in the hype cycle of artificial intelligence [AI] right now, the more important topic is data,” says Sanju Sinha, PhD, an assistant professor in the Cancer Molecular Therapeutics Program at Sanford Burnham Prebys. “Integrating data together in a clear, structured format and making it accessible to everyone is crucial to new discoveries in basic and clinical biomedical research.” 

Sinha is referring to resources such as the  St. Jude-Washington University Pediatric Cancer Genome Project, which makes available to scientists whole genome sequencing data from cancerous and normal cells for more than 800 patients.

Medulloblastoma tumor cells with hundreds of circular DNA pieces

The Chavez lab uses fluorescent markers to observe circular extra-chromosomal DNA elements floating in cancer cells. Research has shown that these fragments of DNA are abundant in solid pediatric tumors and associated with poor clinical outcomes. Image courtesy of Lukas Chavez.

The Children’s Brain Tumor Network is another important repository for researchers studying pediatric brain cancer, such as Lukas Chavez, PhD, an assistant professor in the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys. 

“We have analyzed thousands of whole genome sequencing datasets that we were able to access in these invaluable collections and have identified all kinds of structural rearrangements and mutations,” says Chavez. “Our focus is on a very specific type of structural rearrangement called circular extra-chromosomal DNA elements.” 

Circular extra-chromosomal DNA elements (ecDNA) are pieces of DNA that have broken off normal chromosomes and then been stitched together by DNA repair mechanisms. This phenomenon leads to circular DNA elements floating around in a cancer cell.  

Sanju Sinha, PhD

Sanju Sinha, PhD, is an assistant professor in the Cancer Molecular
Therapeutics Program at  Sanford Burnham Prebys.

“We have shown that they are much more abundant in solid pediatric tumors than we previously thought,” adds Chavez. “And we have also shown that they are associated with very poor outcomes.” 

To help translate this discovery for clinicians and their patients, Chavez is testing the use of deep learning AI algorithms to identify tumors with ecDNA by analyzing the biopsy slides that are routinely created by pathologists to diagnose brain cancer. 

“We have already done the genomic analysis, and we are now turning our attention to the histopathological images to see how much of the genomic information can be predicted from these images,” says Chavez. “Our hope is that we can identify tumors that have ecDNA by evaluating the images without having to go through the genomic sequencing process.”  

Currently, this approach serves only as a clinical biomarker of a challenging prognosis, but Chavez believes it can also be a diagnostic tool—and a game changer for patients.  

“I’m optimistic that in the future we will have drugs that target these DNA circles and improve the therapeutic outcome of patients,” says Chavez.  

“Once medicine catches up, we need to be able to find the patients and match them to the right medicine,” says Chavez. “We’re not there yet, but that’s the goal.” 

Chavez is also advancing his work as scientific director of the Pediatric Neuro-Oncology Molecular Tumor Board at Rady Children’s Hospital in San Diego.  

“Recently, it has been shown that new sequencing technologies coupled with machine learning tools make it possible to compress the time it takes to sequence and classify types of tumors from days or weeks to about 70 minutes,” says Chavez. “This is quick enough to take that technology into the operating room and use a surgical biopsy to classify a tumor.  

“Then we could get feedback to the surgeon in real time so that more or less tissue can be removed depending on if it is a high- or low-grade tumor—and this could dramatically affect patient outcomes.  

“When I talk to neurosurgeons, they are always in a pickle between trying to be aggressive to reduce recurrence risk or being conservative to preserve as much cognitive function and memory as possible for these patients.  

“If the surgeon knows during surgery that it’s a tumor type that’s resistant to treatment versus one that responds very favorably to chemotherapy, radiation or other therapies, that will help in determining how to strike that surgical balance.” 

Lukas Chavez, PhD

Lukas Chavez, PhD, is an assistant professor in the Cancer Genome and Epigenetics Program at Sanford Burnham Prebys.

Artist’s rendering X-shaped chromosomes floating in a cell

Artist’s rendering of X-shaped chromosomes floating in a cell alongside circular extra-chromosomal DNA elements.

Rady Children’s Hospital has also contributed to the future of genomic and computational medicine through BeginNGS, a pilot project to complement traditional newborn health screening with genomic sequencing that screens for approximately 400 genetic conditions. 

“The idea is that if there is a newborn baby with a rare disease, their family often faces a very long odyssey before ever reaching a diagnosis,” says Chavez. “By sequencing newborns, this program has generated success stories, such as identifying genetic variants that have allowed the placement of a child on a specific diet to treat a metabolic disorder, and a child to receive a gene therapy to restore a functional immune system.”


Programming in a Petri Dish, an 8-part series

How artificial intelligence, machine learning and emerging computational technologies are changing biomedical research and the future of health care

  • Part 1 – Using machines to personalize patient care. Artificial intelligence and other computational techniques are aiding scientists and physicians in their quest to prescribe or create treatments for individuals rather than populations.
  • Part 2 – Objective omics. Although the hypothesis is a core concept in science, unbiased omics methods may reduce attachments to incorrect hypotheses that can reduce impartiality and slow progress.
  • Part 3 – Coding clinic. Rapidly evolving computational tools may unlock vast archives of untapped clinical information—and help solve complex challenges confronting health care providers.
  • Part 4 – Scripting their own futures. At Sanford Burnham Prebys Graduate School of Biomedical Sciences, students embrace computational methods to enhance their research careers.
  • Part 5 – Dodging AI and computational biology dangers. Sanford Burnham Prebys scientists say that understanding the potential pitfalls of using AI and other computational tools to guide biomedical research helps maximize benefits while minimizing concerns.
  • Part 6 – Mapping the human body to better treat disease. Scientists synthesize supersized sets of biological and clinical data to make discoveries and find promising treatments.
  • Part 7 – Simulating science or science fiction? By harnessing artificial intelligence and modern computing, scientists are simulating more complex biological, clinical and public health phenomena to accelerate discovery.
  • Part 8 – Acceleration by automation. Increases in the scale and pace of research and drug discovery are being made possible by robotic automation of time-consuming tasks that must be repeated with exhaustive exactness.
Institute News

A year-end note from David Brenner

AuthorDavid Brenner
Date

December 19, 2023

This past year — my first full calendar year as president and CEO of Sanford Burnham Prebys — has been exciting and immensely rewarding. We’ve accomplished a lot and, more importantly, laid the groundwork for a wealth of future achievements.

It begins with having a plan. We are in the midst of a biomedical revolution, one in which the old ways of thinking about and doing science no longer address the complexities of modern research or the greater needs in public health.

Sanford Burnham Prebys is particularly positioned to adapt and lead in this new world by combining distinct and powerful resources with a unified mission driven by ambitious goals that emphasize disease-focused centers combined with enabling technology programs.

Of course, doing so requires a brilliant faculty, one that boasts exceptional skills and vision not just in this moment, but in the years to come. Our faculty know what to do. Our newest faculty promise to further propel and elevate. In less than a year, we have hired eight early-career scientists and physicians, an unprecedented number in such a short time.

They are among the best and brightest, coming from elite labs and institutions across the country: Shengie Feng, PhD (Howard Hughes Medical Institute and UCSF); Kelly Kersten, PhD (UCSF); Angela Liou, MD (Children’s Hospital of Philadelphia) Sanjeev Ranade, PhD (Gladstone Institutes); Sanju Sinha, PhD (National Cancer Institute); Xueqin Sherine Sun, PhD (Cold Spring Harbor Laboratory); Kevin Tharp, PhD (UCSF); and Xiao Tian, PhD (Harvard Medical School).

A couple have already started their next chapters of their careers at Sanford Burnham Prebys, including already landing new grants! Others begin in January or March. Please welcome them.

These eight scientists represent the first wave. There are more to come, the benefit of Denny Sanford’s landmark gift early in 2023.

It has been a robust year in science at Sanford Burnham Prebys, too.

The Cancer Center received a merit extension from the NCI related to its support grant, a rare recognition of ongoing excellence. The Prebys Center for Chemical Genomics continues to be the go-to place for drug discovery, highlighted by a trio of recent awards totaling almost $25 million to pursue novel leads and promising therapies to treat all manners of addiction.

Sanford Burnham Prebys researchers are pushing boundaries across disciplines, from DNA loops in pediatric brain tumors and a sugar with anti-cancer properties to a heart attack study that could change regenerative medicine and discovering that an incurable liver disease might just be curable.

We’ve also welcomed two new trustees: Michael R. Cunningham, PhD and Lori Moore.

It’s been a busy year. It’s been a good year.

With all of you, next year will be even better.

Institute News

How to help children survive—and thrive—after a brain cancer diagnosis

AuthorMonica May
Date

January 13, 2020

Lynne Selinka knew in her heart that something was seriously wrong with her 10-year-old son, Travis. For months he had experienced dizziness, vomiting and headaches, despite his doctor’s best efforts to find a cause. A visit to Rady Children’s Hospital-San Diego revealed a heartbreaking diagnosis: Travis had a malignant brain tumor. He was operated on the next day and then endured two months of radiation treatment followed by six rounds of chemotherapy.

“That year, Travis asked Santa, ‘Can I please be done with chemo before Christmas?’” Lynne said. “It was by far the hardest year of our life.”

Brain tumors are the most common cause of cancer-related death in children—recently surpassing leukemia. To help the public learn about the latest efforts to develop better treatments for pediatric brain cancer, our Institute teamed up with the Fleet Science Center to host a panel discussion on Sunday, December 8. Travis and his parents, Lynne and Tony, shared their story alongside the clinician who treated Travis, John Crawford, MD, director of Pediatric Neuro-Oncology at Rady Children’s Hospital-San Diego; and a scientist working on personalized treatments for pediatric brain cancer, Robert Wechsler-Reya, PhD, of Sanford Burnham Prebys and Rady Children’s Institute for Genomic Medicine. 

As the speakers explained, while aggressive therapies have improved outcomes for children with brain tumors (today Travis is a junior in high school), one in four children with a malignant brain tumor does not survive. Children who do survive have an increased risk of severe long-term side effects from undergoing aggressive treatment at such a young age, including developing additional cancers or experiencing intellectual disability. Six years after he was declared cancer-free, Travis was diagnosed with chronic myeloid leukemia, a type of blood cancer caused by his previous chemotherapy. So far, his new treatment is working.

Wechsler-Reya hopes his work to develop personalized therapies based upon an individual’s tumor could help spare children from this painful experience. By analyzing patient tumor samples—obtained from Rady Children’s Hospital—his team works to understand the cancer at a molecular level, studying the tumor’s DNA mutations, changes in gene expression, responses to drugs, and much more. Armed with this information, the scientists then work to find therapies that are customized to a child’s specific tumor—and may be more effective and less toxic.

“For pediatric brain cancer, success doesn’t just mean better treatments. It also means developing treatments with fewer long-term side effects,” says Wechsler-Reya. “If successful, this work might help more children not only survive brain cancer, but also live a long, healthy life after treatment.

Travis and his family welcome this work with open arms.  

“We try to look for a silver lining in every day. Travis has become an amazing public speaker and now shares his story with other children fighting brain cancer. But each part of our journey has been so hard—from receiving the diagnosis, seeing Travis go through a painful surgery and then chemo, not knowing if the treatments would work, and then being diagnosed with another cancer almost six years later,” said Lynne. “We are so grateful for the efforts of researchers who are working toward a world where a child doesn’t have to go through what Travis did—or at least is spared from some of the hardest parts of the journey.”
 

This event was the last of our five-part “Cornering Cancer” series at the Fleet Science Center. Read about our past discussions focusing on lung, blood, breast and pancreatic cancers.

Institute News

Sanford Burnham Prebys scientists win two American Cancer Society awards

AuthorMonica May
Date

October 1, 2019

Innovation and Collaboration of the Year Awards

The San Diego cancer community—including oncologists, oncology nurses, radiologists, cancer researchers and their friends and family—gathered on September 22 to celebrate progress made in reducing cancer deaths and recognize exceptional individuals and institutions at the inaugural American Cancer Society’s Celebration of Cancer Care Champions in San Diego.

More than 40 finalists were selected, including Sanford Burnham Prebys professors Robert Wechsler-Reya, PhD, who received the Innovation of the Year award for his team’s creation of a new model for studying a brain tumor that commonly arises in infants; and Jorge Moscat, PhD, and Maria Diaz-Meco, PhD, who received the Collaboration of the Year award for their partnership with clinicians at Scripps Clinic who uncovered a novel way to potentially identify a deadly form of colorectal cancer.

Nominations were reviewed by an independent review committee composed of representatives from 10 leading healthcare and research institutions, including Celgene, Kaiser Permanente, Rady Children’s Hospital, Scripps MD Anderson Cancer Center, Moores Cancer Center at UC San Diego Health and more. (Note: Members of the review committee did not score nominations for their own institutions.)

Read on to learn more about our award-winning research:

Innovation of the Year: A new model for studying brain tumors that strike infants
Robert Wechsler-Reya, PhD, a professor at Sanford Burnham Prebys and program director of the Joseph Clayes III Research Center for Neuro-Oncology and Genomics at the Rady Children’s Institute for Genomic Medicine, was honored for his development of a novel mouse model of a pediatric brain tumor called choroid plexus carcinoma. This tumor most commonly arises in infants under the age of one who are too young to undergo radiation treatment. Until now, drug development has been hindered by the lack of models that could help researchers better understand the cancer. Wechsler-Reya and his team have already used the model to identify potential drug compounds that may be therapeutically useful.

Collaboration of the Year (tie): Novel biomarkers to help detect a deadly colorectal cancer 
Sanford Burnham Prebys professors Jorge Moscat, PhD, and Maria Diaz-Meco, PhD; and Scripps Clinic clinicians Darren Sigal, MD, and Fei Baio, MD, were recognized for their successful collaboration. Together, the researchers revealed that loss of two genes drives the formation of the deadly serrated form of colorectal cancer—yielding promising biomarkers that could identify the tumor type. This insight could lead to the development of a diagnostic test to identify serrated colorectal cancer, a hurdle that previously limited our understanding of this deadly cancer type and the development of effective treatments. The research also identified a combination treatment that has treated the cancer in mice.

Institute News

West Coast meets East Coast: Dr. Wechsler-Reya makes special trip to thank students

AuthorMonica May
Date

July 17, 2019

In the summer of 2015, 5-year-old William Schultz began to experience odd and increasingly worrying symptoms, including frequent vomiting. After two emergency-room visits, doctors ushered his parents, Jim and Margaret Schultz, into a small office and gave an unimaginable diagnosis: William had a brain tumor, ultimately revealed as medulloblastoma—the most common malignant childhood brain cancer. Standard treatment proved ineffective. The tumor returned, and William later died due to treatment complications.

William’s parents quickly channeled their pain into action. Mr. and Mrs. Schultz launched William’s Warriors, a foundation that supports art therapy for all children battling cancer, both in and out of the hospital, and raises funds in support of a cure for pediatric brain cancer—the deadliest form of childhood cancer. Even with aggressive treatment, many children don’t survive, and those who do often suffer severe long-term side effects from the therapy. Half of the foundation’s fundraising goes to William’s Superhero Fund, which supports the work of Robert Wechsler-Reya, PhD, professor and director of the Tumor Initiation and Maintenance Program at Sanford Burnham Prebys, and program director of the Clayes Center for Neuro-Oncology and Genomics at the Rady Children’s Institute for Genomic Medicine.

On May 31, 2019, Wechsler-Reya traveled to New York’s Bay Shore High School, where Mrs. Schultz teaches art—and many teachers and students volunteer with the foundation—to provide an update on his research. As part of his goal to develop safer and more effective treatments for pediatric brain cancer, his lab explores potential personalized treatments based on a child’s specific tumor type, nanotechnology approaches that improve drug delivery and immunotherapy to train patients’ immune systems to eradicate the cancer.

The Bay Shore Girls Basketball Team and Brother Sister Organization presented Wechsler-Reya with a donation of funds they raised in support of his research.
The Bay Shore Girls Basketball Team and Brother Sister Organization presented Wechsler-Reya with a donation of funds they raised in support of his research.

The visit, organized by William’s Warriors volunteer and New York State Master Science Teacher Erin Garland, provided students with a unique opportunity to learn firsthand about the drug development process and how their funds directly impact medical research. During the trip, Wechsler-Reya addressed an assembly of students and teachers, attended a student-centered science symposium, met one-on-one with science students and participated in a question-and-answer session with STEAM teachers. Following his address, the Bay Shore Girls Basketball Team and Brother Sister Organization, presented Wechsler-Reya with a donation of funds they raised in support of his research.

“From the bottom of our hearts, we sincerely thank Dr. Wechsler-Reya for taking time out of his very busy schedule to make this visit. But, more importantly, we are grateful for his unwavering commitment to finding a cure for childhood brain cancer,” says Mrs. Schultz. “While William’s life couldn’t be saved, knowing that researchers are working to find a treatment that might help children like him means the absolute world to us.” 

Read William’s story

Donate to William’s Superhero Fund 

Institute News

New drug combination may lead to treatment for childhood brain cancer

AuthorJessica Moore
Date

March 14, 2016

Researchers at SBP have identified a new combination therapy for the most aggressive form of medulloblastoma, a fast growing type of pediatric brain cancer. The study, published  in Cancer Cell, is expected to lead to a clinical trial to confirm the benefits of the novel drug combination. Continue reading “New drug combination may lead to treatment for childhood brain cancer”